Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 5, Pages 1077–1090 (Mi smj2331)  

This article is cited in 4 scientific papers (total in 4 papers)

Implicitly equivalent universal algebras

A. G. Pinus

Novosibirsk State Technical University, Novosibirsk
Full-text PDF (330 kB) Citations (4)
References:
Abstract: The concept of implicit operation on pseudovarieties of semigroups goes back to Eilenberg and Schutzenberger [1]. The author in [2–5] generalized this concept to other classes of algebras and established a connection between these operations and positively conditional termal functions in the case of uniform local finiteness of the algebras of the class in question. In this article we put forth the concept of an implicit operation for an arbitrary universal algebra, not necessarily locally finite, and establish a connection between these operations and infinite analogs of positively conditional terms, as well as $\infty$-quasi-identities arising in the algebraic geometry of universal algebras. We also consider conditions for implicit equivalence of algebras to lattices, semilattices, and Boolean algebras.
Keywords: implicit operation, positively conditional term, $\infty$-quasi-identity.
Received: 07.09.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 5, Pages 862–871
DOI: https://doi.org/10.1134/S0037446612050114
Bibliographic databases:
Document Type: Article
UDC: 512.56
Language: Russian
Citation: A. G. Pinus, “Implicitly equivalent universal algebras”, Sibirsk. Mat. Zh., 53:5 (2012), 1077–1090; Siberian Math. J., 53:5 (2012), 862–871
Citation in format AMSBIB
\Bibitem{Pin12}
\by A.~G.~Pinus
\paper Implicitly equivalent universal algebras
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 5
\pages 1077--1090
\mathnet{http://mi.mathnet.ru/smj2331}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3057928}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 5
\pages 862--871
\crossref{https://doi.org/10.1134/S0037446612050114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310374900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868107481}
Linking options:
  • https://www.mathnet.ru/eng/smj2331
  • https://www.mathnet.ru/eng/smj/v53/i5/p1077
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :95
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024