Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 5, Pages 967–986 (Mi smj2024)  

This article is cited in 12 scientific papers (total in 12 papers)

Ned sets on a hyperplane

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Under study are the sets in Rn (NED sets) each of which does not affect the conformal capacity of any condenser with connected plates disjoint from this set. These sets are removable singularities of quasiconformal mappings, which explains our interest in them. For compact sets on a hyperplane we obtain a geometric criterion of the NED property; we point out a simple sufficient condition for an NED set in terms of the connected attainability of its points from its complement in the hyperplane. For compact sets on a hypersphere we obtain a criterion for an NED set in terms of the reduced module at a pair of points in its complement. We establish that a compact set on a hypersphere S, removable for the capacity in at least one spherical ring concentric with S and containing S, is an NED set.
Keywords: module of a family of curves, NED set, quasiconformal mapping, removable singularity, capacity of a condenser, reduced generalized module, capacity defect, attainable boundary point.
Received: 15.02.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 5, Pages 760–775
DOI: https://doi.org/10.1007/s11202-009-0088-2
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, “Ned sets on a hyperplane”, Sibirsk. Mat. Zh., 50:5 (2009), 967–986; Siberian Math. J., 50:5 (2009), 760–775
Citation in format AMSBIB
\Bibitem{Ase09}
\by V.~V.~Aseev
\paper Ned sets on a~hyperplane
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 5
\pages 967--986
\mathnet{http://mi.mathnet.ru/smj2024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603845}
\elib{https://elibrary.ru/item.asp?id=15299133}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 5
\pages 760--775
\crossref{https://doi.org/10.1007/s11202-009-0088-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350399633}
Linking options:
  • https://www.mathnet.ru/eng/smj2024
  • https://www.mathnet.ru/eng/smj/v50/i5/p967
  • This publication is cited in the following 12 articles:
    1. V. A. Shlyk, “Removable sets for Sobolev spaces with Muckenhoupt A1-weight”, Sib. elektron. matem. izv., 18:1 (2021), 136–159  mathnet  crossref
    2. N. V. Abrosimov, A. D. Mednykh, I. A. Mednykh, A. V. Tetenov, “Vladislavu Vasilevichu Aseevu — 70 let”, Sib. elektron. matem. izv., 14 (2017), A43–A57  mathnet  mathscinet  isi
    3. V. A. Shlyk, A. A. Yakovlev, “Modules of space configuration and removable sets”, J. Math. Sci. (N. Y.), 225:6 (2017), 1022–1031  mathnet  crossref  mathscinet
    4. V. N. Dubinin, “On the reduced modulus of the complex sphere”, Siberian Math. J., 55:5 (2014), 882–892  mathnet  crossref  mathscinet  isi
    5. P. A. Pugach, V. A. Shlyk, “Piecewise linear approximation and polyhedral surfaces”, J. Math. Sci. (N. Y.), 200:5 (2014), 617–623  mathnet  crossref
    6. V. A. Shlyk, “The spherical symmetrization and NED-sets on a hyperplane”, J. Math. Sci. (N. Y.), 193:1 (2013), 145–150  mathnet  crossref  mathscinet
    7. Yu. V. Dymchenko, V. A. Shlyk, “Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets”, Math. Notes, 90:2 (2011), 204–217  mathnet  crossref  crossref  mathscinet  isi
    8. Yu. V. Dymchenko, V. A. Shlyk, “Some properties of the capacity and module of a polycondenser and removable sets”, J. Math. Sci. (N. Y.), 184:6 (2012), 709–715  mathnet  crossref
    9. P. A. Pugach, V. A. Shlyk, “Removable sets for the generalized module of surface's family”, J. Math. Sci. (N. Y.), 184:6 (2012), 755–769  mathnet  crossref
    10. Yu. V. Dymchenko, V. A. Shlyk, “Sufficiency of broken lines in the modulus method and removable sets”, Siberian Math. J., 51:6 (2010), 1028–1042  mathnet  crossref  mathscinet  isi
    11. F. I. Ivanov, V. A. Shlyk, “Null-sets for the extremal lengths”, J. Math. Sci. (N. Y.), 178:2 (2011), 163–169  mathnet  crossref
    12. P. A. Pugach, V. A. Shlyk, “Generalized capacities and polyhedral surfaces”, J. Math. Sci. (N. Y.), 178:2 (2011), 201–218  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :152
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025