Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 5, Pages 987–1009 (Mi smj2025)  

Transient phenomena for random walks in the absence of the expected value of jumps

A. A. Borovkov, P. S. Ruzankin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $\xi,\xi_1,\xi_2,\dots$ be independent identically distributed random variables, and
$$ S_n:=\sum_{j=1}^n\xi_j,\qquad\overline S:=\sup_{n\ge0}S_n. $$
If $\mathbf E\xi=-a<0$ then we call transient those phenomena that happen to the distribution $\overline S$ as $a\to0$ and $\overline S$ tends to infinity in probability. We consider the case when $\mathbf E\xi$ fails to exist and study transient phenomena as $a\to0$ for the following two random walk models:
1. The first model assumes that $\xi_j$ can be represented as $\xi_j=\zeta_j+a\eta_j$, where $\zeta_1,\zeta_2,\dots$ and $\eta_1,\eta_2,\dots$ are two independent sequences of independent random variables, identically distributed in each sequence, such that $\sup_{n\ge0}\sum_{j=1}^n\zeta_j=\infty$, $\sup_{n\ge0}\sum_{j=1}^n\eta_j=\infty$, and $\overline S<\infty$ almost surely.
2. In the second model we consider a triangular array scheme with parameter $a$ and assume that the right tail distribution $\mathbf P(\xi_j\ge t)\sim V(t)$ as $t\to\infty$ depends weakly on $a$, while the left tail distribution is $\mathbf P(\xi_j<-t)=W(t/a)$, where $V$ and $W$ are regularly varying functions and $\overline S<\infty$ almost surely for every fixed $a>0$.
We obtain some results for identically and differently distributed $\xi_j$.
Received: 17.10.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 5, Pages 776–797
DOI: https://doi.org/10.1007/s11202-009-0089-1
Bibliographic databases:
UDC: 519.214.6+519.214.4
Language: Russian
Citation: A. A. Borovkov, P. S. Ruzankin, “Transient phenomena for random walks in the absence of the expected value of jumps”, Sibirsk. Mat. Zh., 50:5 (2009), 987–1009; Siberian Math. J., 50:5 (2009), 776–797
Citation in format AMSBIB
\Bibitem{BorRuz09}
\by A.~A.~Borovkov, P.~S.~Ruzankin
\paper Transient phenomena for random walks in the absence of the expected value of jumps
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 5
\pages 987--1009
\mathnet{http://mi.mathnet.ru/smj2025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603846}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 5
\pages 776--797
\crossref{https://doi.org/10.1007/s11202-009-0089-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350353511}
Linking options:
  • https://www.mathnet.ru/eng/smj2025
  • https://www.mathnet.ru/eng/smj/v50/i5/p987
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024