Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 79, Issue 1, Pages 117–139
DOI: https://doi.org/10.1070/SM1994v079n01ABEH003493
(Mi sm991)
 

This article is cited in 15 scientific papers (total in 15 papers)

First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints

A. V. Arutyunov, S. M. Aseev, V. I. Blagodatskikh

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Nondegenerate first-order necessary conditions for optimality are obtained for the problem (1.1)–(1.4) under different assumptions about controllability at the endpoints. These necessary conditions are obtained in the Hamiltonian form of Clarke [1]. With the help of a smoothing technique [2] the perturbation method in [3] is used to carry the main results in [4] (there the case when the support function $H(x,t,\psi)=\sup_{y\in F(x,t)}\langle y,\psi\rangle$ depends smoothly on the variable $x$ is considered) over to the more natural class of problems with locally Lipschitz support function $H$.
Received: 15.10.1992
Russian version:
Matematicheskii Sbornik, 1993, Volume 184, Number 6, Pages 3–32
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 49K24, 49K15; Secondary 34A60
Language: English
Original paper language: Russian
Citation: A. V. Arutyunov, S. M. Aseev, V. I. Blagodatskikh, “First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints”, Mat. Sb., 184:6 (1993), 3–32; Russian Acad. Sci. Sb. Math., 79:1 (1994), 117–139
Citation in format AMSBIB
\Bibitem{AruAseBla93}
\by A.~V.~Arutyunov, S.~M.~Aseev, V.~I.~Blagodatskikh
\paper First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints
\jour Mat. Sb.
\yr 1993
\vol 184
\issue 6
\pages 3--32
\mathnet{http://mi.mathnet.ru/sm991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1234588}
\zmath{https://zbmath.org/?q=an:0834.49013}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 79
\issue 1
\pages 117--139
\crossref{https://doi.org/10.1070/SM1994v079n01ABEH003493}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PP19200009}
Linking options:
  • https://www.mathnet.ru/eng/sm991
  • https://doi.org/10.1070/SM1994v079n01ABEH003493
  • https://www.mathnet.ru/eng/sm/v184/i6/p3
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:972
    Russian version PDF:270
    English version PDF:24
    References:69
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024