Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2023, Volume 214, Issue 11, Pages 1585–1626
DOI: https://doi.org/10.4213/sm9905e
(Mi sm9905)
 

Characters of classical groups, Schur-type functions and discrete splines

G. I. Olshanskiabc

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
b Skolkovo Institute of Science and Technology, Moscow, Russia
c National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: We study a spectral problem related to finite-dimensional characters of the groups Sp(2N), SO(2N+1) and SO(2N), which form the classical series CB and D, respectively. Irreducible characters of these three series are given by N-variate symmetric polynomials. The spectral problem in question consists in the decomposition of characters after their restriction to subgroups of the same type but smaller rank K<N. The main result of the paper is the derivation of explicit determinantal formulae for the coefficients of the expansion.
In fact, first we compute these coefficients in greater generality — for the multivariate symmetric Jacobi polynomials depending on two continuous parameters. Next, we show that the formulae are drastically simplified in the three special cases of Jacobi polynomials corresponding to characters of the series CB and D. In particular, we show that then these coefficients are given by piecewise polynomial functions. This is where a link with discrete splines arises.
For characters of the series A (that is, of the unitary groups U(N)) similar results were obtained previously by Borodin and this author [5], and then reproved by Petrov [39] by another method. The case of symplectic and orthogonal characters is more intricate.
Bibliography: 58 titles.
Keywords: characters of classical groups, Schur functions, discrete splines, generalized hypergeometric series.
Funding agency Grant number
Russian Science Foundation 23-11-00150
This research was supported by the Russian Science Foundation under grant no. 23-11-00150, https://rscf.ru/en/project/23-11-00150/.
Received: 02.03.2023 and 05.05.2023
Bibliographic databases:
Document Type: Article
MSC: 05E10, 33C20, 33C45
Language: English
Original paper language: Russian

§ 1. Introduction

This introductory section is structured as follows. We begin with a brief description of the problem and its history (§ 1.1) and a discussion of spline functions (§§ 1.21.4). Then we introduce a few necessary definitions (§§ 1.5 and 1.6). After that, in §§ 1.71.9, the main results are stated. Various comments and bibliographic notes are collected in § 1.10.

1.1. Stochastic matrices related to irreducible characters

Let G be a finite or compact group and {χν,G} be the set of its irreducible characters, where the indices ν are appropriate labels. Let us regard the set {χν,G} (or simply the corresponding set {ν} of labels) as a kind of dual object ˆG to the group G. Then one would like to assign to any morphism ϕ:HG a dual ‘morphism’ ˆϕ from ˆG to ˆH; how can we do this? A reasonable solution is as follows. It is more convenient to work with normalized irreducible characters

˜χν,G:=χν,Gdimν,dimν:=χν,G(e).
The pullback of ˜χν,G under ϕ is a normalized, positive definite class function on H, and so it can be written as a convex combination of normalized irreducible characters ˜χϰ,H of the group H:
˜χν,Gϕ=ϰΛGH(ν,ϰ)˜χϰ,H,
where the ΛGH(ν,ϰ) are some coefficients. These coefficients obviously form a stochastic matrix ΛGH of the format {ν}×{ϰ}, and we regard ΛGH as the required dual ‘morphism’ ˆϕ from ˆG to ˆH. This is justified by the fact that stochastic matrices (more generally, Markov kernels) can be viewed as a natural generalization of ordinary maps.1

Example 1.1. Take G=S(n), the symmetric group on the set {1,,n}; then the corresponding set {ν} is Yn, the set of Young diagrams with n boxes. Next, for k<n let H=S(k) be the subgroup of S(n) fixing the points k+1,,n; the corresponding set {ϰ} is Yk. Then

ΛS(n)S(k)(ν,ϰ)={dimϰdim(ν/ϰ)dimνif ϰν,0otherwise,
where dim() is the number of standard tableaux of given (skew) shape.

For this quantity one can obtain a determinantal expression which can be transformed into the following form:

ΛS(n)S(k)(ν,ϰ)=dimϰnksϰ(ν1,ν2,),
where
nk:=n(n1)(nk+1)
and sϰ is the shifted Schur function indexed by ϰ; these functions form a basis of the algebra of shifted symmetric functions; see [29], Theorem 8.1, and [7], Proposition 6.5.

Formula (1.2) makes it possible to find the asymptotics of ΛS(n)S(k)(ν,ϰ) for fixed ϰ and growing ν. As an application, one obtains a relatively simple proof of Thoma’s theorem about characters of the infinite symmetric group (see [22] and [7]).

Another notable fact is that the quantity

nkdimϰΛS(n)S(k)(ν,ϰ),
viewed as a function of the partition ν, has a similarity with the Schur function (which is not obvious from the initial definition (1.1)).

In [5] we raised the problem of studying the stochastic matrices ΛU(N)U(K) related to unitary group characters; here the matrix entries ΛU(N)U(K)(ν,ϰ) are indexed by tuples of integers

ν=(ν1νN)andϰ=(ϰ1ϰK),K<N.
In that work we were guided by a remarkable analogy2 between the infinite symmetric group S() and the infinite-dimensional unitary group U().

We obtained in [5] a determinantal ‘Schur-type’ expression for the matrix entries ΛU(N)U(K)(ν,ϰ) and applied it to a novel derivation of the classification theorem for the characters of the infinite-dimensional unitary group U().

The aim of the present paper is to extend the results of [5] to other series of compact classical groups, that is, the symplectic groups Sp(2N) (series C) and the orthogonal groups SO(2N+1) and SO(2N) (series B and D). As it often occurs in representation theory, working with the series C, B and D turns out to be harder than with the series A. The present paper is focused on the combinatorial aspects of the problem, and the asymptotic analysis is deferred to a separate publication.

1.2. The B-spline

Given an N-tuple of real numbers y1>>yN, we define a function of a variable xR by

MN(x;y1,,yN):=(N1)i:yix(yix)N2r:ri(yiyr).
Note that the number of terms on the right-hand side depends on the position of the variable x relative to the parameters y1,,yN. The function xMN(x;y1,,yN) has the following properties:

The function xMN(x;y1,,yN) is called the B-spline with knots y1,,yN (‘B’ is an abbreviation of ‘basic’). The paper [11] by Curry and Schoenberg contains remarkable results about the B-spline. For more details about spline functions, see Schumaker’s monograph [46].

The next remark (due to Okounkov) relates B-splines to random matrices. Let H(N) be the space of N×N Hermitian matrices. The unitary group U(N) acts on H(N) by conjugations. Let O(y1,,yN)H(N) denote the set of matrices with eigenvalues y1,,yN. It is an U(N)-orbit and carries a (unique) U(N)-invariant probability measure, which we denote by P(y1,,yN).

Remark 1.2. Consider the projection O(y1,,yN)R assigning to a matrix XO(y1,,yN) its upper leftmost entry X11. The pushforward of the measure P(y1,,yN) under this projection is the measure MN(x;y1,,yN)dx.

This fact can easily be derived from Theorem 2 in [11]; see [38], Remark 8.2.

1.3. Discrete B-splines

Throughout the paper we use the standard notation for the Pochhammer symbol (also known as raising factorial power)

(x)m:=x(x+1)(x+m1)=Γ(x+m)Γ(x),m=0,1,2,.

By the discrete B-spline with integral knots y1>>yN we mean the function on Z defined by

MdiscrN(x;y1,,yN):=(N1)i:yix(yix+1)N2r:ri(yiyr).
This agrees with the definition in Schumaker [46], § 8.5, up to minor changes. Note that the right-hand side of (1.4) is not affected if, instead of yix, we impose the weaker condition yi+N2x: the reason is that the function x(yx+1)N2 vanishes at the points y+1,,y+N2. Formula (1.4) is very similar to (1.3), only the variable x now ranges over Z rather than R, and ordinary powers are replaced by raising factorial powers. The discrete B-spline has properties similar to properties (i)–(iv) above. In particular, it determines a finitely supported probability measure on Z (its support is the lattice interval yN+N2xy1).

1.4. A link with characters of U(N)

Let SignNZN denote the set of N-tuples of integers ν=(ν1,,νN) subject to the inequalities ν1νN. Elements νSignN are called signatures of length N. They parametrize the irreducible characters of the unitary group U(N); these characters can be thought of as symmetric N-variate Laurent polynomials (also known as rational Schur functions) and are denoted by χν,N(u1,,uN). We also introduce the normalized characters

˜χν,N(u1,,uN):=χν,N(u1,,uN)χν,N(1,,1),νSignN.

Observe that u˜χν,N(u,1,,1) is a univariate Laurent polynomial and consider its expansion in the monomials uk, which we write in the form

˜χν,N(u,1,,1)=kZΛN1(ν,k)uk.

The coefficients ΛN1(ν,k) are nonnegative real numbers which sum to 1 for every fixed νSignN. Thus, we can view ΛN1(ν,) as a finitely supported probability distribution on Z.

In combinatorial terms the quantity χν,N(1,,1) (the dimension of the character χν,N) is equal to the number of triangular Gelfand-Tsetlin patterns with top row ν, whereas ΛN1(ν,k) is the fraction of the patterns with bottom entry k.

Proposition 1.3 (see [5], formula (7.10)). For any signature νSignN the distribution ΛN1(ν,) is the discrete B-spline with knots yi=νii+1:

ΛN1(ν,k)=MdiscrN(k;ν1,ν21,,νNN+1),kZ.

Formally, formula (7.10) in [5] assumes that k1; however, the whole picture is invariant under the simultaneous shift of all coordinates by an arbitrary integer, so this constraint can be dropped. Another derivation of (1.7) can be obtained from the proof of Theorem 1.2 in Petrov [39].

1.5. Schur-type functions

Let Sign+NSignN denote the set of positive signatures of length N: these are N-tuples of integers ν=(ν1,,νN) subject to the constraints ν1νN0.

Let ϕ0(x)1,ϕ1(x),ϕ2(x), be an infinite sequence of functions of a variable x. For a signature νSign+N we define a symmetric function of N variables x1,,xN by

ϕν,N(x1,,xN):=det[ϕνi+Ni(xj)]Ni,j=1det[ϕNi(xj)]Ni,j=1.
Note that ϕ,N(x1,,xN)1, where :=(0,,0).

The definition (1.8) fits in the formalism proposed by Nakagawa, Noumi, Shirakawa and Yamada [28] as an alternative approach to Macdonald’s 9th variation of Schur functions [26]. The latter term is historically justified, but slightly inconvenient to use. For this reason we prefer to call functions (1.8) Schur-type functions.

If ϕn is a polynomial of degree n (n=0,1,2,), then the denominator on the right-hand side is proportional to the Vandermonde determinant

V(x1,,xN):=1i<jN(xixj),
which implies that the functions ϕν,N are symmetric polynomials. Such Schur-type functions are sometimes called generalized Schur polynomials; see Sergeev and Veselov [47], for example. Note that these polynomials form a basis in the algebra of N-variate symmetric polynomials. In the particular case when ϕn(x)=xn (n=0,1,2,) we obtain ordinary Schur polynomials.

Throughout our paper various Schur-type functions ϕν,N appear. Sometimes they are polynomials, and sometimes they are not.

1.6. Stochastic matrices ΛNK related to Jacobi polynomials

We are mainly interested in characters of the compact classical groups

Sp(2N)(series C),SO(2N+1)(series B)andSO(2N)(series D).
However, a substantial part of our results hold true in the broader context of multivariate Jacobi polynomials.

Recall that classical Jacobi polynomials P(a,bn(x) are orthogonal polynomials with weight function (1x)a(1+x)b on [1,1] (Szegő [50]). The corresponding N-variate Jacobi polynomials are defined by

P(a,b)ν,N(x1,,xN):=det[P(a,b)νi+Ni(xj)]Ni,j=1V(x1,,xN),νSign+N.
These polynomials are an instance of generalized Schur polynomials (up to constant factors); they are also a particular case of the more general 3-parameter family of orthogonal polynomials associated with the root system BCN (see, for example, Lassale [24] or Heckman’s lectures in [21]).

The three distinguished cases of Jacobi parameters

(a,b)=(12,12),(12,12), or (12,12)
correspond to characters of the groups (1.9) (in the same order). More precisely, set xi=12(ui+u1i) and regard u±11,,u±1N as the matrix eigenvalues. Then the polynomials P(a,b)ν,N, suitably renormalized, turn to irreducible characters, with the understanding that in the case of the series D and νN>0 one must take the sum of two ‘twin’ irreducible characters (see, for example, Okounkov and Olshanski [30]).

Constant factors can be neglected here, because we deal with normalized characters and the normalized polynomials

˜P(a,b)ν,N(x1,,xN):=P(a,b)ν,N(x1,,xN)P(a,b)ν,N(1,,1).

Definition 1.4. With each couple (N,K) of natural numbers N>K1 we associate a matrix ΛNK of the format Sign+N×Sign+K: the matrix entries ΛNK(ν,ϰ) are the coefficients in the expansion

˜P(a,b)ν,N(x1,,xK,1,,1)=ϰSign+KΛNK(ν,ϰ)˜P(a,b)ϰ,K(x1,,xK).
The matrix depends on the Jacobi parameters (a,b), but we suppress them to simplify the notation. Our assumptions on the Jacobi parameters are the following:
a>1,b>1anda+b1.

Here the first two inequalities ensure the integrability of the weight function. The third inequality is an additional technical assumption; it is obviously satisfied for the three special values (1.10).

Our goal is to find explicit formulae for the quantities ΛNK(ν,ϰ), with the emphasis on the three distinguished cases (1.10) corresponding to characters of the series C, B and D.

One can think of ΛNK(ν,ϰ) as a function of the variable νSign+N, with ϰSign+K being an index. Or, conversely, as a function of ϰ indexed by ν. The first point of view is motivated by asymptotic representation theory, where one is interested in large N limits (Okounkov and Olshanski [31], [32]). The second point of view has its origins in spectral problems of classical representation theory and leads, in the distinguished cases (1.10), to multidimensional discrete splines.

From the branching rule of multivariate Jacobi polynomials (see [32], Proposition 7.5) and the condition a+b1 it follows that the coefficients ΛNK(ν,ϰ) are nonnegative (in the three special cases (1.10) this also follows from the classical branching rule of symplectic and orthogonal characters; see Zhelobenko [57]). Next, the row sums of the matrix entries are equal to 1 (to see this, substitute x1==xK=1 into (1.12)). This means that ΛNK(ν,) is a probability distribution on the set Sign+K, for any fixed νSign+N. In other words, ΛNK is a stochastic matrix, and its entries ΛNK(ν,ϰ) can be viewed as transition probabilities between the sets Sign+N and Sign+K.

We proceed to the description of the main results (Theorems AD).

1.7. A Cauchy-type identity involving ΛNK (Theorem A)

Throughout the paper we use the notation

L:=NK+1andε:=a+b+12.
We often use the parameters (a,ε) instead of (a,b).

Given a positive integer N and νSign+N we set

FN(t;ν;ε):=Ni=1t2(Ni+ε)2t2(νi+Ni+ε)2.
This is an even rational function of t. We call it the characteristic function of the signature ν.

We also set

dN(ν;ε):=1i<jN((νi+Ni+ε)2(νj+Nj+ε)2).
We need dN(ν,ε) to be nonzero. Because of this (and for some other reasons) we have imposed the additional constraint a+b1, meaning that ε0. This guarantees that dN(ν,ε)0. In the distinguished cases (1.10) we have ε=1,1/2,0.

Next, we introduce the sequence of functions

gk(t)=gk(t;a,ε,L):=4F3[k,k+2ε,L,L+at+L+ε,t+L+ε,a+1|1],k=0,1,2,.
The right-hand side is a balanced (= Saalschützian) hypergeometric series (Bailey [3], § 2.5). Because k is a nonnegative integer, the series terminates and represents a rational function of variable t. Because of the symmetry gk(t)=gk(t), it is actually a rational function of t2. Note that g0(t)1.

Note also that in the limit transition as L, combined with a change of the variable t, the functions gk(t) degenerate into the Jacobi polynomials; see § 9.3.

From the sequence {gk(t)} we form Schur-type functions in accordance with (1.8):

Gϰ,K(t1,,tK)=det[gϰi+Ki(tj)]Ki,j=1det[gKi(tj)]Ki,j=1,ϰSign+K.

Theorem A. The following identity holds true:

Kj=1FN(tj;ν;ε)=ϰSign+KΛNK(ν,ϰ)dK(ϰ;ε)Gϰ,K(t1,,tK).
The sum on the right-hand side is finite, and the quantities ΛNK(ν,ϰ) are uniquely determined by this formula.

The proof is presented in § 4.

This result has the form of Cauchy’s identity connecting two families of multivariate functions, both indexed by elements ϰSign+K. Specifically, these functions are νΛNK(ν,ϰ)/dK(ϰ;ε) and Gϰ,K(t1,,tK). In the first family we take as the variables the shifted coordinates ni:=νi+Ni, where i=1,,N. Then on the other side of the identity we obtain a double product over two sets of variables,

Ni=1Kj=1t2j(Ni+ε)2t2j(ni+ε)2,
which is separately symmetric with respect to the permutations of n1,,nN and t1,,tK — just as in the classical Cauchy identity.

1.8. A determinantal formula for the matrix entries ΛNK(ν,ϰ) (Theorem B)

To state the result we need a few definitions. Given an integer L2, we consider the infinite grid

A(ε,L):={A1,A2,}R>0,Am:=L+ε+m1,m=1,2,,
and we denote by F(ε,L) the vector space whose elements are even rational functions f(t) of the complex variable t, which are regular at t= and such that their only singularities are simple poles contained in the set (A(ε,L))A(ε,L). Obviously,
F(ε,2)F(ε,3),
and all these spaces have countable dimension. We show that the functions gk(t)=gk(t;a,ε,L) form a basis of F(ε,L). Given ϕF(ε,L), we denote by (ϕ:gk) coefficients in the expansion
ϕ(t)=k=0(ϕ:gk)gk(t).

Theorem B. With the notation introduced above, we have the following determinantal formula:

ΛNK(ν,ϰ)dK(ϰ;ε)=det[(gKjFN:gϰi+Ki)]Ki,j=1.

The proof is presented in § 4.

Note that the characteristic function (1.14) lies in the space F(ε,N). More generally, under our assumption that L=NK+1, the function gKjFN lies in F(ε,L) for any j=1,,K. This implies that the quantities (gKjFN:gϰi+Ki) are well defined.

The determinantal formula (1.20) resembles the classical Jacobi-Trudi formula for the Schur functions (or rather its version for Macdonald’s 9th variation of Schur functions). This result is deduced from Theorem A in the same way as the classical Jacobi-Trudi formula is deduced from Cauchy’s identity.

Theorem A and Theorem B show that if we treat ν as a variable and ϰ as a parameter, then the functions

νΛNK(ν,ϰ)dK(ϰ;ε)
share two fundamental properties of Schur functions: Cauchy’s identity and the Jacobi-Trudi identity.

1.9. The computation of the matrix entries ΛNK(ν,ϰ) (Theorems C and D)

Our subsequent actions are driven by the desire to find an explicit expression for the entries of the K×K matrix on the right-hand side of formula (1.20). This leads us to the problem of computing the coefficients (ϕ:gk) of the expansion (1.19) for a given function ϕF(ε,L). Solving this problem will allow us to find explicitly the matrix entries ΛNK(ν,ϰ) from the determinantal formula (1.20), because the matrix entries on the right-hand side are of the form (ϕ:gk), where ϕ=gKjFNF(ε,L) and k=ϰi+Ki.

Our approach to this problem is a follows. For a function ϕF(ε,L) we denote by Rest=Amϕ(t) its residue at the point t=AmA(ε,L). Because ϕ(t) is rational, it has finitely many poles only. We need the most natural and simplest basis of the space F(ε,L), which is formed by the functions

e0(t)1andem(t):=1tAm1t+Am,mZ1.
By analogy with (1.19) we denote by (em:gk) the transition coefficients between the bases {em} and {gk}.

Next, it is not difficult to show that for any ϕF(ε,L),

(ϕ:gk)={mkRest=Am(ϕ(t))(em:gk),k1,ϕ()+m1Rest=Am(ϕ(t))(em:g0),k=0
(see Proposition 5.1). The sums in (1.22) are, in fact, finite because the number of poles is finite.

Theorem C. The transition coefficients (em:gk) have an explicit expression in terms of a terminating hypergeometric series of type 4F3.

A more detailed formulation of this result is presented in Theorem 5.2.

Combining (1.22) with Theorem C we obtain an expression for matrix entries on the right-hand of (1.20). The final result looks complicated because it involves the residues of the functions ϕ=gKjFN, which are given by certain hypergeometric series of type 4F3, and also the transition coefficients, which are given by some other 4F3 series.

However, the situation simplifies radically for symplectic and orthogonal characters.

Theorem D. Consider the three distinguished cases (1.10) of Jacobi parameters that correspond to characters of the classical groups of type C, B and D. Then the matrix entries (gKjFN:gϰi+Ki) on the right-hand side of (1.20) admit an explicit elementary expression.

A detailed formulation of this result is presented in Theorem 8.1. It turns out that in the three distinguished cases the two families of 4F3 series (for the functions gk(t) and for the coefficients (em:gk)) are miraculously summed explicitly. This is shown in Theorems 6.1 and 7.1, respectively.

In the particular case K=1 we obtain symplectic and orthogonal versions of the discrete B-spline (see § 8.2).

1.10. Notes

1. The present paper is a continuation of the work [5] by Borodin and this author. In [5] similar results were obtained in type A, that is, for characters of the unitary groups U(N). However, the case of symplectic and orthogonal characters, and especially that of multivariate Jacobi polynomials, is more difficult.

2. Part of the results of [5] was reproved and extended by Petrov [39]. His method is very different; it allows one to compute the correlation kernel of a two-dimensional determinantal point process generated by the stochastic matrices ΛNN1 related to characters of unitary groups. The explicit expression for matrix elements of ΛNK from [5] is then obtained as a direct corollary. Moreover, Petrov also obtained a q-version of these results. On the other hand Petrov’s approach does not produce a Cauchy-type identity.

3. In a scaling limit, the stochastic matrices ΛNK of all four types A, B, C and D degenerate into certain continuous Markov kernels, which are related to corner processes in random matrix theory. These Markov kernels are given by determinantal expressions involving continuous spline functions; see this author [33], Faraut [16], and Zubov [58]. The results of these works do not rely on [5]. On the other hand, they can be derived from the earlier results of Defosseux [12] about the correlation functions of corner processes.

4. The restriction problem for characters of classical groups and multivariate Jacobi polynomials was also considered by Gorin and Panova [20], but from a different point of view. Namely, those authors were interested in finding explicit formulae for the resulting functions, and they did not deal with the spectral expansion. Our approach describes the dual picture, related to that of [20] by a Fourier-type transform. This reveals such aspects of the problem as the Cauchy-type identity from Theorem A or the connection with discrete splines, which do not arise in the context of [20]. It seems to me that both approaches complement each other well. In the case of unitary group characters it is not too difficult (at least, for K=1) to derive the formulae of [5] from those of [20], but in the case of characters of the series C, B and D this does not seem to be an easy task.

5. The present work, as well as [5], originated from a problem in asymptotic representation theory. In the case of characters of the series C, B and D our formulae for matrix elements ΛNK(ν,ϰ) are well-suited for making the large N limit transition in the spirit of [5], § 8, which leads to one more approach to the classification of extremal characters of the infinite-dimensional symplectic and orthogonal groups.3 Earlier works on this subject are Boyer [8], Pickrell [40], Okounkov and Olshanski [31] and Gorin and Panova [20].

6. An aspect of the present work, which seems to be of interest, is its connection with classical analysis. Such connections have already arisen in various problems concerning representations of infinite-dimensional groups. Here are some examples.

The link with the \mathrm{B}-spline and its discrete version adds one more item to this list of connections with classical analysis. Note that the large N limit transition for the \mathrm{B}-spline, studied by Curry and Schoenberg [11], is connected directly with the asymptotic approach to the classification of spherical functions for U(\infty)\ltimes H(\infty). Likewise, a similar asymptotic problem for the discrete \mathrm{B}-spline is connected with the classification of characters of U(\infty).

Next, not so long ago, spline theorists also came up with a q-deformation of the \mathrm{B}-spline: the first paper on this topic is Simeonov and Goldman [48]; of the subsequent works on this topic, note Budakçi and Oruç [10]. As pointed out in this author’s paper [36], this new version also arises in the representation-theoretic context related to the works by Gorin [18], Petrov [39] and Gorin and this author [19].

1.11. The organization of the paper

The short sections (§§ 2 and 3) contain some preparatory material. Then we proceed to the proofs of Theorems A and B4) and Theorem C5). Sections 6 and 7 are devoted to simplifications of hypergeometric series in the three distinguished cases (1.10). In § 8 we deduce Theorem D from these results. As a corollary, we obtain symplectic and orthogonal versions of the discrete \mathrm{B}-spline. The last section (§ 9) contains a few remarks, in particular, an example of biorthogonal system of rational functions.

§ 2. Multiparameter and dual Schur functions

Here we state a few results from [37], § 4, which are used in what follows. (As pointed out in [37], these results can also be extracted from the earlier paper by Molev [27].)

Definition 2.1 (multiparameter Schur polynomials). Let (c_0,c_1,c_2,\dots) be an infinite sequence of parameters and consider the monic polynomials

\begin{equation*} (x\mid c_0,c_1,\dots)^m:=(x-c_0)\dotsb(x-c_{m-1}), \qquad m=0,1,2,\dots\,. \end{equation*} \notag
The N-variate multiparameter Schur polynomials are defined by
\begin{equation*} S_{\mu, N}(x_1,\dots,x_N\mid c_0,c_1,\dots) :=\frac{\det[(x_i\mid c_0,c_1,\dots)^{\mu_r+N-r}]_{i,r=1}^N}{V(x_1,\dots,x_N)}, \qquad \mu\in\operatorname{Sign}^+_N. \end{equation*} \notag
This is a particular case of generalized Schur polynomials (see § 1.5). If c_0=c_1=\dots=0, they turn to the conventional Schur polynomials.

Definition 2.2 (dual Schur functions). We apply the definition of Schur-type functions (§ 1.5) by taking

\begin{equation*} \phi_m(t)=\frac1{(y\mid c_1,c_2,\dots)^m} \end{equation*} \notag
(note a shift by 1 in the indexation of the parameters). The corresponding N-variate functions are denoted by \sigma_{\mu, N}(y_1,\dots,y_N\mid c_1,c_2,\dots):
\begin{equation} \sigma_{\mu, N}(y_1,\dots,y_N\mid c_1,c_2,\dots) :=\frac{\det\biggl[\dfrac1{(y_j\mid c_1,c_2,\dots)^{\mu_r+N-r}}\biggr]_{j,r=1}^N} {\det\biggl[\dfrac1{(y_j\mid c_1,c_2,\dots)^{N-r}}\biggr]_{j,r=1}^N}. \end{equation} \tag{2.1}
Following Molev [27] we call them (N-variate) dual Schur functions. If c_1=c_2=\dots=0, then they turn to conventional Schur polynomials in the variables y_1^{-1},\dots,y_N^{-1}.

Lemma 2.3 (see [37], Lemma 4.5). Dual Schur functions (2.1) possess the following stability property:

\begin{equation} \begin{aligned} \, \notag &\sigma_{\mu, N}(y_1,\dots,y_N\mid c_1,c_2,\dots)\big|_{y_N=\infty} \\ &\qquad=\begin{cases} \sigma_{\mu, N-1}(y_1,\dots,y_{N-1}\mid c_2,c_3,\dots), & \ell(\mu)\leqslant N-1, \\ 0, & \ell(\mu)=N. \end{cases} \end{aligned} \end{equation} \tag{2.2}

Lemma 2.4 (see [37], Lemma 4.6). One has

\begin{equation} \det\biggl[\frac1{(y_j\mid c_1,c_2,\dots)^{N-r}}\biggr]_{j,r=1}^N = \frac{(-1)^{N(N-1)/2}\,V(y_1,\dots,y_N)}{\prod_{j=1}^N(y_j-c_1)\dotsb(y_j-c_{N-1})}. \end{equation} \tag{2.3}

Lemma 2.5 (see [37], Lemma 4.7). The dual Schur functions in N variables form a topological basis in the subalgebra of \mathbb{C}[[y_1^{-1},\dots,y_N^{-1}]] formed by the symmetric power series.

Proposition 2.6 (Cauchy-type identity; see [37], Proposition 4.8). For K\leqslant N one has

\begin{equation} \begin{aligned} \, \notag &\sum_{\mu\in\operatorname{Sign}^+_K}S_{\mu, N}(x_1,\dots,x_N\mid c_0,c_1,\dots) \sigma_{\mu, K}(y_1,\dots,y_K\mid c_{N-K+1},c_{N-K+2},\dots) \\ &\qquad =\prod_{j=1}^K\frac{(y_j-c_0)\dotsb(y_j-c_{N-1})}{(y_j-x_1)\dotsb(y_j-x_N)}, \end{aligned} \end{equation} \tag{2.4}
where both sides are regarded as elements of the algebra of formal series in y_1^{-1},\dots, y_k^{-1}.

§ 3. Coherency property for special multiparameter Schur polynomials

In the next proposition we use the normalized Jacobi polynomials \widetilde P^{(a,b)}_{\nu,N} defined in (1.11), the multiparameter Schur polynomials (Definition 2.1) corresponding to the special sequence of parameters

\begin{equation*} (\varepsilon^2,(\varepsilon+1)^2, (\varepsilon+2)^2,\dots) \end{equation*} \notag
and the conventional Schur polynomials S_{\mu,N}. Recall that \varepsilon=(a+b+1)/2.

Given \nu\in\operatorname{Sign}^+_N, we set

\begin{equation} n_i:=\nu_i+N-i, \qquad 1\leqslant i\leqslant N. \end{equation} \tag{3.1}

Proposition 3.1 (binomial formula for Jacobi polynomials). Let \nu\in\operatorname{Sign}^+_N. Then

\begin{equation} \begin{aligned} \, \notag &\widetilde P^{(a,b)}_{\nu, N}(1+\alpha_1,\dots,1+\alpha_N) \\ &\qquad =\sum_{\mu\in\operatorname{Sign}^+_N}\frac{S_{\mu, N}((n_1+\varepsilon)^2,\dots,(n_N+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2, \dots)}{C(N,\mu; a)}S_{\mu, N}(\alpha_1,\dots,\alpha_N), \end{aligned} \end{equation} \tag{3.2}
where
\begin{equation} C(N,\mu;a)= 2^{|\mu|}\, \prod_{i=1}^N \frac{\Gamma(\mu_i+N-i+1)\Gamma(\mu_i+N-i+a+1)} {\Gamma(N-i+1)\Gamma(N-i+a+1)}. \end{equation} \tag{3.3}

See Okounkov and Olshanski [30], Theorem 1.2, and [32], Proposition 7.4, for the proof.

Let \nu\in\operatorname{Sign}^+_N and \varkappa\in\operatorname{Sign}^+_K, where N>K\geqslant1. Recall that the quantities \Lambda^N_K(\nu,\varkappa) are the coefficients in the expansion

\begin{equation} \widetilde P^{(a,b)}_{\nu, N}(x_1,\dots,x_K,1,\dots,1) =\sum_{\varkappa\in\operatorname{Sign}^+_K}\Lambda^N_K(\nu,\varkappa) \widetilde P^{(a,b)}_{\varkappa, K}(x_1,\dots,x_K). \end{equation} \tag{3.4}
Next, let \mu\in\operatorname{Sign}^+_K. We can also regard \mu as a signature of length N by adjusting N-K zeros (this occurs on the left-hand side of relation (3.5) below). By analogy with (3.1) we also set
\begin{equation*} k_i:=\varkappa_i+K-i, \qquad 1\leqslant i\leqslant K. \end{equation*} \notag

Theorem 3.2 (coherency property). With the above notation, the following relation holds:

\begin{equation} \begin{aligned} \, \notag &\frac{S_{\mu, N}((n_1+\varepsilon)^2,\dots,(n_N+\varepsilon)^2\mid\varepsilon^2, (\varepsilon+1)^2, \dots)}{C(N,\mu;a)} \\ &\qquad =\sum_{\varkappa\in\operatorname{Sign}^+_K} \Lambda^N_K(\nu,\varkappa)\frac{S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid\varepsilon^2, (\varepsilon+1)^2,\dots)}{C(K,\mu;a)}. \end{aligned} \end{equation} \tag{3.5}

Comments. 1. The series on the right-hand side terminates, because for any \nu there are only finitely many \varkappa for which \Lambda^N_K(\nu,\varkappa)\ne0. Indeed, a necessary condition for \Lambda^N_K(\nu,\varkappa)\ne0 is \varkappa_1\leqslant\nu_1, as seen from the branching rule for multivariate Jacobi polynomials (see [32], Proposition 7.5).

2. A similar relation holds in the case of type \mathcal{A} (see [5], (5.6), and [29], (10.30)).

3. Let \nu\in\operatorname{Sign}^+_N be fixed, and let \mu range over \operatorname{Sign}^+_K. Then \Lambda^N_K(\nu,\,\cdot\,) is a unique finitely supported solution of the system of linear equations produced by the coherency relations (3.5). This follows from the fact that the multiparameter Schur polynomials on the right-hand side of (3.5) form a basis of the algebra of symmetric K-variate polynomials, and this algebra separates the K-point configurations of the form

\begin{equation*} (x_1,\dots,x_k)=((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2) \end{equation*} \notag
corresponding to the signatures \varkappa\in\operatorname{Sign}^+_K.

Proof of Theorem 3.2. We apply the binomial formula (3.2) and the definition (3.4). We make the change N\to K and \nu\to \varkappa; then equation (3.2) turns to
\begin{equation*} \begin{aligned} \, &\widetilde P^{(a,b)}_{\varkappa, K}(1+\alpha_1,\dots,1+\alpha_K) \\ &\qquad =\sum_{\mu\in\operatorname{Sign}^+_K}\frac{S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid \varepsilon^2,(\varepsilon+1)^2,\dots)} {C(K,\mu;a)}S_{\mu, K}(\alpha_1,\dots,\alpha_K). \end{aligned} \end{equation*} \notag

Substituting this into (3.4) and interchanging the order of summation gives

\begin{equation} \begin{aligned} \, \notag &\widetilde P^{(a,b)}_{\nu, N}(1+\alpha_1,\dots,1+\alpha_K,1,\dots,1) \\ \notag &\quad =\sum_{\mu\in\operatorname{Sign}^+_K}\biggl(\sum_{\varkappa\in\operatorname{Sign}^+_K} \Lambda^N_K(\nu,\varkappa)\frac{S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)}{C(K,\mu;a)}\biggr) \\ &\quad\qquad \times S_{\mu, K}(\alpha_1,\dots,\alpha_K). \end{aligned} \end{equation} \tag{3.6}

On the other hand, specializing \alpha_{K+1}=\dots=\alpha_N=0 in the binomial formula (3.2) gives

\begin{equation} \begin{aligned} \, \notag &\widetilde P^{(a,b)}_{\nu, N}(1+\alpha_1,\dots,1+\alpha_K, 1,\dots,1) \\ &\qquad=\sum_{\mu\in\mathbb L_K}\frac{S_{\mu, N}((n_1+\varepsilon)^2,\dots,(n_N+\varepsilon)^2\mid \varepsilon^2,(\varepsilon+1)^2,\dots)} {C(N,\mu;a)}S_{\mu, K}(\alpha_1,\dots,\alpha_K). \end{aligned} \end{equation} \tag{3.7}

Comparing (3.6) with (3.7) and equating the coefficients of the Schur polynomials S_{\mu, K}(\alpha_1,\dots,\alpha_K) we arrive at the required formula (3.5).

Theorem 3.2 is proved.

§ 4. Cauchy-type identity and determinantal formula for the matrix entries \Lambda^N_K(\nu,\varkappa): proof of Theorems A and B

In this section we fix Jacobi parameters (a,b) such that a>-1, b>-1 and a+b\geqslant-1, so that the parameter \varepsilon:=\frac12(a+b+1) is nonnegative. We deal with the functions g_k(t), the Schur-type functions G_\varkappa(t_1,\dots,t_K), the characteristic function F_N(t;\nu;\varepsilon) of signature \nu\in\operatorname{Sign}^+_N, and the space \mathcal{F}(\varepsilon,L) related to the grid \mathbb{A}(\varepsilon,L) consisting of the points A_m:=L+\varepsilon+m-1, where m=1,2,\dots . All these objects were defined in §§ 1.7 and 1.8. We assume that N>K and L=N-K+1, so that L\geqslant2.

Lemma 4.1. For each \nu\in\operatorname{Sign}^+_N the function \prod_{j=1}^K F_N(t_j;\nu;\varepsilon) can be written in a unique way as a finite linear combination of the functions G_\varkappa(t_1,\dots,t_K), where \varkappa ranges over \operatorname{Sign}^+_K.

Proof. Step 1. From the definition (1.16) of the functions g_k(t) it can be seen that they are even, rational, and regular at t=\infty. The function g_0(t) is the constant 1. If k\geqslant1, then the singularities of g_k(t) are simple poles contained in the set \{\pm A_1,\dots, \pm A_k\}; moreover, the residues at \pm A_k are nonzero. It follows that the functions g_k(t) form a basis of \mathcal{F}(\varepsilon,L).

Step 2. The claim of the lemma is obviously equivalent to the following: there exists a unique finite expansion of the form

\begin{equation} \det[g_{K-i}(t_j)]_{i,j=1}^K\prod_{j=1}^KF_N(t_j;\nu;\varepsilon) =\sum_{k_1>\dots>k_K\geqslant0}(\cdots)\det[g_{k_i}(t_j)]_{i,j=1}^K, \end{equation} \tag{4.1}
where the dots denote some coefficients.

We write the left-hand side as

\begin{equation*} \det[g_{K-i}(t_j)F_N(t_j;\nu;\varepsilon)]_{i,j=1}^K. \end{equation*} \notag
By virtue of step 1 the existence and uniqueness of the expansion (4.1) is reduced to the following claim, concerning functions of a single variable t: for each m=0,\dots, K-1, the function g_m(t) F_N(t;\nu;\varepsilon) lies in the space \mathcal{F}(\varepsilon,L).

Step 3. Let us prove the latter claim. It is clear that g_m(t) F_N(t;\nu;\varepsilon) is even, rational and regular at infinity. It remains to examine its singularities. From the definition (1.14) of F_N(t;\nu;\varepsilon) it follows that its singularities are simple poles contained in the set

\begin{equation*} \{\pm (N+\varepsilon), \pm(N+\varepsilon+1), \pm(N+\varepsilon+2), \dots\}, \end{equation*} \notag
while the singularities of g_m(t) with m\ne0 are simple poles contained in the set
\begin{equation*} \{\pm (L+\varepsilon), \pm(L+\varepsilon+1),\dots, \pm(L+\varepsilon+m-1)\}. \end{equation*} \notag
Since m\leqslant K-1 and L=N-K+1, these sets are disjoint. Furthermore, they are contained in -(\mathbb{A}(\varepsilon,L)\cup\mathbb{A}(\varepsilon,L). Thus, the product g_m(t) F_N(t;\nu;\varepsilon) has only simple poles, all of which are contained in -(\mathbb{A}(\varepsilon,L)\cup\mathbb{A}(\varepsilon,L). This proves that g_m(t) F_N(t;\nu;\varepsilon) lies in the space \mathcal{F}(\varepsilon,L).

Lemma 4.1 is proved.

For \varkappa\in\operatorname{Sign}^+_K we set

\begin{equation} \begin{aligned} \, \notag d_K(\varkappa;\varepsilon) &:=\prod_{1\leqslant i<j\leqslant K}\frac{(k_i+\varepsilon)^2-(k_j+\varepsilon)^2}{(k^0_i+\varepsilon)^2-(k^0_j+\varepsilon)^2} \\ &=\prod_{1\leqslant i<j\leqslant K}\frac{(\varkappa_i+K-i+\varepsilon)^2 -(\varkappa_j+K-j+\varepsilon)^2}{(K-i+\varepsilon)^2-(K-j+\varepsilon)^2}. \end{aligned} \end{equation} \tag{4.2}

We will show that the precise form of the expansion in Lemma 4.1 is as follows:

\begin{equation} \prod_{j=1}^KF_N(t_j;\nu;\varepsilon)=\sum_{\varkappa\in\operatorname{Sign}^+_K}\frac{\Lambda^N_K(\nu,\varkappa)}{d_K(\varkappa;\varepsilon)}\,G_\varkappa(t_1,\dots,t_K). \end{equation} \tag{4.3}
(This is Theorem A in § 1.7.)

Before proceeding to the proof we need some preparations. In the next lemma we deal with a particular case of the multiparameter Schur polynomials (Definition 2.1) and dual Schur functions (Definition 2.2). We assume that \mu,\varkappa\in\operatorname{Sign}^+_K and write \mu\subseteq\varkappa if \mu_i\leqslant\varkappa_i for all i=1,\dots,K.

Lemma 4.2. For \varkappa\in\operatorname{Sign}^+_K one has

\begin{equation} \frac{G_\varkappa(t_1,\dots,t_K; a,\varepsilon,L)}{d_K(\varkappa;\varepsilon)}=\sum_{\mu\colon \mu\subseteq\varkappa} A_{\mu,\varkappa}\, \sigma_{\mu, K}(t_1^2,\dots,t_K^2\mid (L+\varepsilon)^2, (L+\varepsilon+1)^2,\dots), \end{equation} \tag{4.4}
where the coefficients A_{\mu,\varkappa} are given by
\begin{equation} \begin{aligned} \, \notag A_{\mu,\varkappa}: &=\prod_{i=1}^K\frac{(L)_{m_i}(L+a)_{m_i}(a+1)_{K-i}(K-i)!}{(a+1)_{m_i}m_i!\,(L)_{K-i}(L+a)_{K-i}} \\ &\qquad \times S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots) \end{aligned} \end{equation} \tag{4.5}
with m_i:=\mu_i+K-i.

Due to the constraint \mu\subseteq\varkappa, the expansion (4.4) is finite. Here is an immediate corollary of the lemma.

Corollary 4.3. The rational function on the left-hand side of (4.4), viewed as a function of the variables t_1^{-1},\dots,t_K^{-1}, is regular about the point (0,\dots,0) and its value at this point equals 1.

Indeed, this follows from the fact that the coefficient A_{\varnothing,\varkappa} corresponding to the signature \varnothing=(0,\dots0) equals 1.

Proof of Lemma 4.2. Step 1. We rewrite the definition (1.16) of the function g_k(t) in the form
\begin{equation*} g_k(t)=\sum_{m=0}^\infty X(k,m)Y(t,m), \end{equation*} \notag
where
\begin{equation} X(k,m):=\frac{(-k)_m(k+2\varepsilon)_m(L)_m(L+a)_m}{(a+1)_m m!} \end{equation} \tag{4.6}
and
\begin{equation} Y(t,m):=\frac1{(-t+\varepsilon+L)_m(t+\varepsilon+L)_m}. \end{equation} \tag{4.7}
The idea is to separate the terms depending on t from those depending on k. The formally infinite series terminates in fact because of the factor (-k)_m.

From this presentation it follows that for \varkappa\in\operatorname{Sign}^+_K,

\begin{equation} \det[g_{k_i}(t_j)]_{i,j=1}^K=\sum_{m_1>\dots>m_r\geqslant0} \det[X(k_i,m_r)]_{i,r=1}^K\det[Y(t_j,m_r)]_{j,r=1}^K. \end{equation} \tag{4.8}

Let \mu\in\operatorname{Sign}^+_K be the signature corresponding to the tuple (m_1,\dots,m_K), which means that \mu_i=m_i-(K-i) for i=1,\dots,K. Observe that \det[X(k_i,m_r)]_{i,r=1}^K=0 unless m_i\leqslant k_i for all i=1,\dots,K. Indeed, suppose the opposite; then there exists an index s such that m_s>k_s. It follows that m_i>k_r whenever i\leqslant s\leqslant r. Due to the factor (-k)_m in (4.6), for any such pair (i,r) the corresponding entry X(k_i,m_r) vanishes. But this implies in turn that the determinant vanishes.

We have proved that summation in (4.8) goes in fact over the signatures \mu\subseteq\varkappa.

Step 2. In particular, for \varkappa=\varnothing the sum (4.8) reduces to a single summand:

\begin{equation} \det[g_{K-i}(t_j)]_{i,j=1}^K=\det[X(K-i,K-r)]_{i,r=1}^K\det[Y(t_j,K-r)]_{j,r=1}^K. \end{equation} \tag{4.9}
From (4.8), (4.9) and the definition (1.17) of the function G_\varkappa(t_1,\dots,t_K) we obtain
\begin{equation} G_\varkappa(t_1,\dots,t_K)=\sum_{\mu\colon \mu\subseteq\varkappa}\frac{\det[X(k_i,m_r)]_{i,r=1}^K}{\det[X(K-i,K-r)]_{i,r=1}^K}\frac{\det[Y(t_j,m_r)]_{j,r=1}^K}{\det[Y(t_j,K-r)]_{j,r=1}^K}. \end{equation} \tag{4.10}

We divide both sides of (4.10) by d_K(\varkappa;\varepsilon). Then the left-hand side is the same as in (4.4). We are going to show that

\begin{equation} \frac1{d_K(\varkappa;\varepsilon)}\,\frac{\det[X(k_i,m_r)]_{i,r=1}^K}{\det[X(K-i,K-r)]_{i,r=1}^K} =(-1)^{|\mu|}A_{\mu,\varkappa} \end{equation} \tag{4.11}
and
\begin{equation} \frac{\det[Y(t_j,m_r)]_{j,r=1}^K}{\det[Y(t_j,K-r)]_{j,r=1}^K}=(-1)^{|\mu|}\sigma_{\mu, K}(t_1^2,\dots,t_K^2\mid (L+\varepsilon)^2, (L+\varepsilon+1)^2,\dots). \end{equation} \tag{4.12}
This will give us the required equality (4.4).

Step 3. Let us prove (4.11). From the definition of X(k,m) (see (4.6)) we obtain

\begin{equation} \begin{aligned} \, \notag \frac{\det[X(k_i,m_r)]_{i,r=1}^K}{\det[X(K-i,K-r)]_{i,r=1}^K} &=(\text{the product in (4.5)}) \\ &\qquad\times\frac{\det[(-k_i)_{m_r}(k_i+2\varepsilon)_{m_r}]} {\det[(-(K-i))_{K-r}(K-i+2\varepsilon)_{K-r}]}. \end{aligned} \end{equation} \tag{4.13}
Observe that
\begin{equation} \begin{aligned} \, \notag (-k)_m(k+2\varepsilon)_m &=\prod_{\ell=0}^{m-1}(-k+\ell)(k+2\varepsilon+\ell) =(-1)^m\prod_{l=0}^{m-1}((k+\varepsilon)^2-(\varepsilon+\ell)^2) \\ &=(-1)^m((k+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)^m. \end{aligned} \end{equation} \tag{4.14}
It follows that
\begin{equation} \frac{\det[(-k_i)_{m_r}(k_i+2\varepsilon)_{m_r}]}{\det[(-(K-i))_{K-r}(K-i)_{K-r}]} =(-1)^{|\mu|}\frac{\det[((k_i+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)^{m_r}]}{\det[((K-i+\varepsilon)^2\mid \varepsilon^2, (\varepsilon\!+\!1)^2,\dots)^{K-r}]}. \end{equation} \tag{4.15}
Next, we observe that
\begin{equation*} \det[((K-i+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)^{K-r}]=\prod_{1\leqslant i<j\leqslant K}((K-i)^2-(K-j)^2), \end{equation*} \notag
and use the definition (4.2) of d_K(\varkappa;\varepsilon). This allows us to write the left-hand side of (4.11) as
\begin{equation*} (\text{the product in (4.5)}) \times (-1)^{|\mu|}\frac{\det[((k_i+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)^{m_r}]}{\prod_{1\leqslant i<j\leqslant K}((k_i+\varepsilon)^2-(k_j+\varepsilon)^2)}. \end{equation*} \notag
From the definition of dual Schur functions (see Definition 2.1) we conclude that the resulting expression is equal to (-1)^{|\mu|} A_{\mu,\varkappa}, as required.

Step 4. Let us prove (4.12). Similarly to (4.14) we have

\begin{equation} (-t+\varepsilon+L)_m(t+\varepsilon+L)_m=(-1)^m (t^2\mid (L+\varepsilon)^2,(L+\varepsilon+1)^2,\dots)^m. \end{equation} \tag{4.16}
From this and the definition of Y(t,m) (see (4.7)) we obtain
\begin{equation} \frac{\det[Y(t_j,m_r)]_{j,r=1}^K}{\det[Y(t_j,K-r)]_{j,r=1}^K} =(-1)^{|\mu|}\frac{\det\biggl[\dfrac1{(t_j^2\mid (\varepsilon+L)^2,(\varepsilon+L+1)^2,\dots)^{m_r}} \biggr]}{\det\biggl[\dfrac1{(t_j^2\mid (\varepsilon+L)^2,(\varepsilon+L+1)^2,\dots)^{K-r}}\biggr]}. \end{equation} \tag{4.17}
By the definition of dual Schur functions (Definition 2.2) this equals the right-hand side of (4.12).

Lemma 4.2 is proved.

Proof of Theorem A. Step 1. We begin with the coherency relation (3.5), which we write in the form
\begin{equation*} \begin{aligned} \, &S_{\mu, N}((n_1+\varepsilon)^2,\dots,(n_N+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2, \dots) \\ &\quad =\sum_{\varkappa\in\operatorname{Sign}^+_K} \Lambda^N_K(\nu,\varkappa)S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)\frac{C(N,\mu;a)}{C(K,\mu;a)}. \end{aligned} \end{equation*} \notag
Here \mu\in\operatorname{Sign}^+_K is arbitrary; recall also that the sum is finite, because for each fixed \nu the quantity \Lambda^N_K(\nu,\varkappa) is nonzero only for finitely many \varkappa.

We multiply both sides by

\begin{equation*} \sigma_{\mu, K}(t^2_1,\dots,t^2_K\mid (\varepsilon+N-K+1)^2,\,(\varepsilon+N-K+2)^2,\,\dots) \end{equation*} \notag
and sum over all \mu\in\operatorname{Sign}^+_K, which makes sense in the algebra of formal power series in t^{-2}_1,\dots,t^{-2}_K due to Lemma 2.5. The resulting equality has the form
\begin{equation} \begin{aligned} \, \notag &\sum_{\mu\in\operatorname{Sign}^+_K}S_{\mu, N}((n_1+\varepsilon)^2,\dots,(n_N+\varepsilon)^2\mid \varepsilon^2,(\varepsilon+1)^2,\dots) \\ \notag &\qquad\qquad \times \sigma_{\mu, K}(t^2_1,\dots,t^2_K\mid (\varepsilon+N-K+1)^2,\,(\varepsilon+N-K+2)^2,\,\dots) \\ \notag &\qquad=\sum_{\mu\in\operatorname{Sign}^+_K}\sum_{\varkappa\in\operatorname{Sign}^+_K} \Lambda^N_K(\nu,\varkappa)S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid \varepsilon^2,(\varepsilon+1)^2,\dots) \\ &\qquad\qquad \times \frac{C(N,\mu;a)}{C(K,\mu;a)} \sigma_{\mu, K}(t^2_1,\dots,t^2_K\mid (\varepsilon+N-K+1)^2,\,(\varepsilon+N-K+2)^2,\,\dots). \end{aligned} \end{equation} \tag{4.18}

We will show that this equation can be transformed into (4.3).

Step 2. We examine the left-hand side of (4.18). We apply to it the Cauchy-type identity (see (2.4))

\begin{equation*} \begin{aligned} \, &\sum_{\mu\colon\ell(\mu)\leqslant K}S_{\mu, N}(x_1,\dots,x_N\mid c_0,c_1,\dots) \sigma_{\mu \mid K}(y_1,\dots,y_K\mid c_{N-K+1},c_{N-K+2},\dots) \\ &\qquad =\prod_{j=1}^K\frac{(y_j-c_0)\cdots(y_j-c_{N-1})}{(y_j-x_1)\cdots(y_j-x_N)}, \end{aligned} \end{equation*} \notag
where we specialize
\begin{equation*} x_1:=(n_1+\varepsilon)^2, \quad \dots, \quad x_N:=(n_N+\varepsilon)^2, \qquad y_1:=t_1^2, \quad \dots, \quad y_K:=t_K^2 \end{equation*} \notag
and
\begin{equation*} c_i:=(\varepsilon+i)^2, \qquad i=0,1,\dots\,. \end{equation*} \notag
Then the result gives us the left-hand side of (4.3).

Step 3. We proceed now to the right-hand side of (4.18). Here we can change the order of summation, because \varkappa ranges actually over a finite set depending only on \nu. Then we obtain the double sum

\begin{equation*} \sum_{\varkappa\in\operatorname{Sign}^+_K}\Lambda^N_K(\nu,\varkappa) \sum_{\mu\in\operatorname{Sign}^+_K}(\cdots), \end{equation*} \notag
where the inner sum over \mu has the form
\begin{equation} \begin{aligned} \, \notag &\sum_{\mu\in\operatorname{Sign}^+_K} S_{\mu, K}((k_1+\varepsilon)^2,\dots,(k_K+\varepsilon)^2\mid \varepsilon^2, (\varepsilon+1)^2,\dots)\frac{C(N,\mu;a)}{C(K,\mu;a)} \\ &\qquad\qquad \times \sigma_{\mu, K}(t^2_1,\dots,t^2_K\mid (\varepsilon+N-K+1)^2,\,(\varepsilon+N-K+2)^2,\,\dots). \end{aligned} \end{equation} \tag{4.19}
We will prove that this sum equals
\begin{equation*} \frac{G_\varkappa(t_1,\dots,t_K)}{d_K(\varkappa,\varepsilon)}, \end{equation*} \notag
which implies in turn that the right-hand side of (4.18) coincides with the right-hand side of (4.3).

Comparing (4.19) with the result of Lemma 4.2 we see that it remains to check the equality

\begin{equation} \frac{C(N,\mu;a)}{C(K,\mu;a)}=\prod_{i=1}^K \frac{(L)_{m_i}(L+a)_{m_i}(a+1)_{K-i}(K-i)!}{(a+1)_{m_i}m_i!\, (L)_{K-i}(L+a)_{K-i}}. \end{equation} \tag{4.20}

The quantities on the left-hand side were defined in (3.3); they are

\begin{equation} C(N,\mu;a)= 2^{|\mu|}\, \prod_{i=1}^N \frac{\Gamma(\mu_i+N-i+1)\Gamma(\mu_i+N-i+a+1)} {\Gamma(N-i+1)\Gamma(N-i+a+1)} \end{equation} \tag{4.21}
and
\begin{equation} C(K,\mu;a)= 2^{|\mu|}\, \prod_{i=1}^K \frac{\Gamma(\mu_i+K-i+1)\Gamma(\mu_i+K-i+a+1)} {\Gamma(K-i+1)\Gamma(K-i+a+1)}. \end{equation} \tag{4.22}
Since \ell(\mu)\leqslant K, the product in (4.21) can in fact be restricted to i=1,\dots,K. After that equality (4.20) is readily checked.

Theorem A is proved.

Remark 4.4. The main ingredients of the proof of Theorem A are two formulae involving Schur-type functions: the Cauchy-type identity (2.4) and the coherency relation (3.5). A similar mechanism works in the case of unitary groups (see [5]).

Remark 4.5. In the statement of Theorem A it was assumed that N>K. Here we examine what happens for N=K. Looking at the proof one sees that it works for N=K, with the understanding that \Lambda^K_K(\nu,\varkappa)=\delta_{\nu,\varkappa}. Then the result reduces to

\begin{equation*} \prod_{j=1}^KF_K(t_j;\nu;\varepsilon)=\sum_{\varkappa\in \operatorname{Sign}^+_K}\delta_{\nu,\varkappa}\frac{G_\varkappa(t_1,\dots,t_K;a,\varepsilon,1)}{d_K(\varkappa;\varepsilon)}, \end{equation*} \notag
where we have used the more extended notation G_\varkappa(t_1,\dots,t_K;a,\varepsilon,L) instead of G_\varkappa(t_1,\dots,t_K) and then have specialized L to 1, because N=K means that L=1.

We rewrite this equality as

\begin{equation*} G_\varkappa(t_1,\dots,t_K;a,\varepsilon,1)=d_K(\varkappa;\varepsilon) \prod_{j=1}^KF_K(t_j;\varkappa;\varepsilon) \end{equation*} \notag
or, in a more extended form (we use the definition (1.14)),
\begin{equation} G_\varkappa(t_1,\dots,t_K;a,\varepsilon,1)=\prod_{j=1}^K\prod_{i=1}^K \frac{t_j^2-(k^0_i+\varepsilon)^2}{t_j^2-(\varkappa_i+\varepsilon)^2}\cdot \prod_{1\leqslant i<j\leqslant K}\frac{(k_i+\varepsilon)^2-(k_j+\varepsilon)^2}{(k_i^0+\varepsilon)^2-(k_j^0+\varepsilon)^2}, \end{equation} \tag{4.23}
where k_i:=\varkappa_i+K-i and k^0_i:=K-i.

Formula (4.23) can be checked directly as follows.

For L=1, the definition (1.16) simplifies drastically and takes the form

\begin{equation} g_k(t;a,\varepsilon,1):={}_3F_2 \biggl[\begin{matrix} -k,\, k+2\varepsilon,\, 1 \\ -t+1+\varepsilon,\, t+1+\varepsilon \end{matrix} \biggm|1\biggr] =\frac{t^2-\varepsilon^2}{t^2-(k+\varepsilon)^2}, \end{equation} \tag{4.24}
where the second equality follows from a well-known summation formula due to Saalschütz (Bailey [3], § 2.2, (1)). The resulting expression (4.24) is precisely the special case of (4.23) corresponding to K=1.

Next, using (4.24), for K\geqslant2 we obtain

\begin{equation*} \det[g_{k_i}(t_j;a,\varepsilon,1)]_{i,j=1}^K =\prod_{j=1}^K(t_j^2-\varepsilon^2)\cdot\det\biggl[\frac1{t_j^2-(k_i+\varepsilon)^2}\biggr]_{i,j=1}^K. \end{equation*} \notag
The determinant on the right is a Cauchy determinant. It follows that
\begin{equation*} \det[g_{k_i}(t_j;a,\varepsilon,1)]_{i,j=1}^K=(\cdots) \prod_{i,j=1}^K\frac1{t_j^2-(k_i+\varepsilon)^2}\cdot\prod_{1\leqslant i<j\leqslant K}((k_i+\varepsilon)^2-(k_j+\varepsilon)^2), \end{equation*} \notag
where the dots denote an expression which depends only on the t_j but does not depend on the k_i. Dividing this by a similar expression for k_i=k_i^0 we finally obtain (4.23).

Recall that the functions g_k(t) constitute a basis of \mathcal{F}(\varepsilon,L) (step 1 of the proof of Lemma 4.1). Given a function \phi\in \mathcal{F}(\varepsilon,L), we denote by (\phi:g_k) the kth coefficient (k=0,1,2,\dots) in the expansion of \phi in the basis \{g_k\}.

Proof of Theorem B. We have to prove that the following determinantal formula holds:
\begin{equation} \frac{\Lambda^N_K(\nu,\varkappa)}{d_K(\varkappa;\varepsilon)} =\det[(g_{K-j}F_N\colon g_{k_i})]_{i,j=1}^K,\qquad \nu\in\operatorname{Sign}^+_N,\quad \varkappa\in\operatorname{Sign}^+_K. \end{equation} \tag{4.25}

This is Theorem B in § 1.8.

Recall that, according to (4.3),

\begin{equation} \prod_{j=1}^KF_N(t_j;\nu;\varepsilon) =\sum_{\varkappa\in\operatorname{Sign}^+_K}\frac{\Lambda^N_K(\nu,\varkappa)} {d_K(\varkappa;\varepsilon)}\,G_\varkappa(t_1,\dots,t_K), \qquad t_1,\dots,t_k\in\mathbb C, \end{equation} \tag{4.26}
and (the definition (1.17)) that
\begin{equation} G_{\varkappa,K}(t_1,\dots,t_K)=\frac{\det[g_{\varkappa_i+K-i}(t_j)]_{i,j=1}^K} {\det[g_{K-i}(t_j)]_{i,j=1}^K}. \end{equation} \tag{4.27}
Substituting (4.27) into (4.26) and multiplying both sides by \det[g_{K-i}(t_j)]_{i,j=1}^K we obtain
\begin{equation} \det[g_{K-i}(t_j)F_N(t_j;\nu;\varepsilon)]_{i,j=1}^K=\sum_{k_1>\dots>k_K\geqslant0} \frac{\Lambda^N_K(\nu,\varkappa)}{d_K(\varkappa;\varepsilon)}\, \det[g_{k_i}(t_j)]_{i,j=1}^K. \end{equation} \tag{4.28}
Next, recall that the functions g_{K-i}(t)F_N(t;\nu;\varepsilon) lie in this space (see the proof of Lemma 4.1, step 3).

Now we abbreviate

\begin{equation*} h_{K-i}(t):=g_{K-i}(t)F_N(t;\nu;\varepsilon). \end{equation*} \notag
It follows from the above that there exists a unique expansion
\begin{equation*} \det[h_{K-i}(t_j)]_{i,j=1}^K=\sum_{k_1>\dots>k_K\geqslant0} c(k_1,\dots,k_K) \det[g_{K-i}(t_j)]_{i,j=1}^K, \end{equation*} \notag
which is valid for all t_1,\dots,t_K. Furthermore, the coefficients of this expansion are given by
\begin{equation*} c(k_1,\dots,k_K)=\det[(h_{K-j}\colon g_{k_i})]_{i,j=1}^K. \end{equation*} \notag
It follows that (4.28) implies (4.25).

Theorem B is proved.

A determinantal formula similar to (4.25) holds for unitary groups; see [5], Proposition 6.2. Notice that (4.25) resembles the classical Jacobi-Trudi formula for the Schur symmetric polynomials, and the above argument is similar to the derivation of this formula from Cauchy’s identity.

§ 5. Expansion in the basis \{g_k(t)\} in the general case: proof of Theorem C

Recall that we deal with the functions defined by (1.16):

\begin{equation*} g_k(t;a,\varepsilon,L):={}_4F_3\biggl[\begin{matrix}-k,\, k+2\varepsilon,\, L,\, L+a\\-t+L+\varepsilon,\, t+L+\varepsilon,\, a+1\end{matrix}\biggm|1\biggr], \qquad k=0,1,2,\dots\,. \end{equation*} \notag
Here L\geqslant2 is a positive integer, and a>-1 and \varepsilon\geqslant0 are real parameters. We keep these parameters fixed and abbreviate g_k(t):=g_k(t;a,\varepsilon,L).

We keep to the notation introduced in §§ 1.8 and 1.9. In particular, {\{e_m\colon m\in\mathbb{Z}_{\geqslant0}\}} is the basis of \mathcal{F}(\varepsilon,L) defined in (1.21) and \operatorname{Res}_{t=A_m}(\phi(t)) denotes the residue of \phi(t) at the point t=A_m.

The Jacobi-Trudi-type formula presented in Theorem B reduces the computation of the matrix entries \Lambda^N_K(\nu,\varkappa) to the following one-dimensional problem (it was already stated in § 1.9).

Problem. Given a function \phi\in\mathcal{F}(\varepsilon,L), how can we compute the coefficients (\phi:g_k) in the expansion (1.19)? Specifically, we need this for the functions {\phi=g_{K-j}F_N}.

In the present section we study the problem in the case of general Jacobi parameters (as before, the only constraints are the ones in (1.13)).

Proposition 5.1. For any \phi\in \mathcal{F}(\varepsilon,L) one has

\begin{equation} (\phi:g_k)=\begin{cases} \displaystyle \sum_{m\geqslant k}\operatorname*{Res}_{t=A_m}(\phi(t))(e_m:g_k), & k\geqslant1, \\ \displaystyle \phi(\infty)+\sum_{m\geqslant1}\operatorname*{Res}_{t=A_m}(\phi(t))(e_m: g_0), & k=0. \end{cases} \end{equation} \tag{5.1}

Proof. We write the expansion of \phi in the basis \{e_m\} as
\begin{equation*} \phi=\sum_{m\geqslant0}(\phi: e_m)e_m. \end{equation*} \notag
From this we obtain
\begin{equation} (\phi: g_k)=\sum_{m\geqslant0}(\phi: e_m)(e_m:g_k), \qquad k\in\mathbb Z_{\geqslant0}. \end{equation} \tag{5.2}

On the other hand, from the definition of the functions e_m(t) it follows that

\begin{equation} (\phi: e_0)=\phi(\infty), \qquad (\phi: e_m)=\operatorname*{Res}_{t=A_m}(\phi(t)), \quad m\geqslant1. \end{equation} \tag{5.3}

Recall that g_0=1 and the only poles of the function g_k with index k\geqslant1 are the points A_{\pm \ell} with 1\leqslant \ell\leqslant k. Therefore, for each k\geqslant0 the coefficients (g_k:e_\ell) vanish unless \ell\leqslant k. This triangularity property implies in its turn that the coefficients (e_m,g_k) vanish unless m\geqslant k. Thus, we can rewrite (5.2) as

\begin{equation*} (\phi: g_k)=\sum_{m\geqslant k}(\phi: e_m)(e_m:g_k), \qquad k\in\mathbb Z_{\geqslant0}. \end{equation*} \notag
In combination with (5.3), this yields (5.1).

The proposition is proved.

To apply Proposition 5.1 we must know the transition coefficients (e_m:g_k) for m\geqslant k\geqslant0 and m\geqslant1. They are computed in the next theorem.

Theorem 5.2. (i) For m\geqslant1 and k\geqslant1,

\begin{equation*} \begin{aligned} \, (e_m:g_k) &=2(L+\varepsilon+m-1)(2L+2\varepsilon+m-1)_{k-1}\frac{(m-1)!}{(m-k)!} \\ &\qquad \times \frac{(a+1)_k}{(L)_k(L+a)_k(k+2\varepsilon)_k} \\ &\qquad \times {}_4F_3\biggl[\begin{matrix} k-m,\; k+1,\; k+a+1,\; 2L+2\varepsilon+m+k-2 \\ L+k,\; L+a+k,\; 2k+2\varepsilon+1\end{matrix}\biggm|1\biggr]. \end{aligned} \end{equation*} \notag

(ii) For m\geqslant1 and k=0,

\begin{equation*} \begin{aligned} \, (e_m:g_0) &=-\frac{2(L+\varepsilon+m-1)(a+1)}{L(L+a)(2\varepsilon+1)} \\ &\qquad \times{}_4F_3\biggl[\begin{matrix} 1-m,\; 1,\;a+2,\; 2L+2\varepsilon+m-1 \\ L+1,\; L+a+1,\; 2\varepsilon+2\end{matrix}\biggm|1\biggr]. \end{aligned} \end{equation*} \notag

This theorem (in combination with Proposition 5.1) is an extended version of Theorem C from § 1.9.

The proof is based on three lemmas. To state them we need to introduce the auxiliary rational functions

\begin{equation*} f_\ell(t):=\frac1{(-t+L+\varepsilon)_\ell(t+L+\varepsilon)_\ell}, \qquad \ell\in\mathbb Z_{\geqslant0}. \end{equation*} \notag

From the proof of Proposition 5.1 we know that the transition matrix between the bases \{e_m\} and \{g_k\} is triangular with respect to the natural order on the index set \mathbb{Z}_{\geqslant0}.

Lemma 5.3. (i) The functions f_\ell form a basis of \mathcal{F}(\varepsilon,L).

(ii) The transition matrices between all three bases, \{e_m\}, \{g_k\} and \{f_\ell\}, are triangular.

Proof. Note that f_0=1. Next, if \ell\geqslant1, then the function f_\ell(t) vanishes at infinity and its singularities are precisely simple poles at the points \pm A_m, m=1,\dots,\ell. It follows that the functions f_\ell lie in the space \mathcal{F}(\varepsilon,L). The same properties also imply that the transition coefficients (f_\ell: e_m) vanish unless m\leqslant\ell. Moreover, {(f_\ell: e_m)\ne0} for m=\ell. This means that \{f_\ell\} is a basis and the transition matrix between \{f_\ell\} and \{e_m\} is triangular. This implies in turn that all transition matrices in question are triangular too.

The lemma is proved.

We write (\phi:f_\ell) for the coefficients in the expansion of a function \phi\in\mathcal{F}(\varepsilon,L) in the basis \{f_\ell\}. From Lemma 5.3 we obtain

\begin{equation} (e_m:g_k)=\sum_{\ell=k}^m(e_m:f_\ell)(f_\ell:g_k), \qquad m\geqslant k. \end{equation} \tag{5.4}
The purpose of the two next lemmas is to compute the coefficients (e_m:f_\ell) and (f_\ell:g_k).

Lemma 5.4. Let m\in\mathbb{Z}_{\geqslant1}. Then the following hold.

(i) We have

\begin{equation} (e_m:f_0)=0. \end{equation} \tag{5.5}

(ii) For \ell\geqslant1 we have

\begin{equation*} (e_m:f_\ell)=2(-1)^{\ell}(L+\varepsilon+m-1)\prod_{j=1}^{\ell-1}(2L+2\varepsilon+m+j-2)(m-j). \end{equation*} \notag

Note that the triangularity property is ensured by the product \prod_{j=1}^{\ell-1}(m-j).

Proof of Lemma 5.4. (i) The functions e_m(t) and f_\ell(t) with nonzero indices vanish at t=\infty. This implies (i).

(ii) Let z and a_1,a_2,\dots be formal variables. Then the next identity is easily proved by induction on m:

\begin{equation*} \frac1{z-a_m}=\frac1{z-a_1}+\frac{a_m-a_1}{(z-a_1)(z-a_2)} +\dots+\frac{(a_m-a_1)\dotsb(a_m-a_{m-1})}{(z-a_1)\dotsb(z-a_m)}, \end{equation*} \notag
that is, the coefficients of the expansion are
\begin{equation} \biggl(\frac1{z-a_m}:\frac1{(z-a_1)\dotsb(z-a_\ell)}\biggr)=\prod_{j=1}^{\ell-1}(a_m-a_j), \qquad m=1,2,\dots\,. \end{equation} \tag{5.6}

Now observe that

\begin{equation*} e_m(t)=\frac{2(L+\varepsilon+m-1)}{t^2-(L+\varepsilon+m-1)^2}, \qquad m=1,2,\dots, \end{equation*} \notag
and
\begin{equation*} f_\ell(t)=\frac{(-1)^\ell}{(t^2-(L+\varepsilon)^2)\dotsb(t^2-(L+\varepsilon+\ell-1)^2)}. \end{equation*} \notag
So we set
\begin{equation*} z=t^2 \quad\text{and}\quad a_m=(L+\varepsilon+m-1)^2 \end{equation*} \notag
and use (5.6). This proves (ii).

The lemma is proved.

Lemma 5.5. The following formula holds:

\begin{equation*} (f_\ell:g_k)=\frac{2(k+\varepsilon)\Gamma(a+\ell+1) \Gamma(k+2\varepsilon)(-\ell)_k}{(L)_\ell(L+a)_\ell\Gamma(a+1)\Gamma(k+2\varepsilon+\ell+1)k!}. \end{equation*} \notag

Note that the triangularity property is ensured by the factor (-\ell)_k.

Proof of Lemma 5.5. The functions g_k(t) can be written in the form
\begin{equation} g_k(t):=\sum_{\ell=0}^k\frac{(-k)_\ell(k+2\varepsilon)_\ell}{(a+1)_\ell \ell!}\,\widetilde f_\ell(t), \qquad k\in\mathbb Z_{\geqslant0}, \end{equation} \tag{5.7}
where
\begin{equation*} \widetilde f_\ell(t):=(L)_\ell(L+a)_\ell f_\ell(t). \end{equation*} \notag
We compare (5.7) with the well-known formula for Jacobi polynomials (Erdelyi [15], § 10.8)
\begin{equation*} \widetilde P^{(a,b)}_k(x):=\frac{\Gamma(a+1)k!}{\Gamma(k+a+1)}\,P^{(a,b)}_k(x) =\sum_{\ell=0}^k\frac{(-k)_\ell(k+2\varepsilon)_\ell}{(a+1)_\ell \ell!}\biggl(\frac{1-x}2\biggr)^\ell. \end{equation*} \notag
The coefficients in these two expansions are the same, which implies that the required coefficients (\widetilde f_\ell:g_k) coincide with the coefficients in the expansion of (\frac12(1-x))^\ell in the polynomials \widetilde P^{(a,b)}_k(x). This expansion can easily be derived using Rodrigues’s formula for Jacobi polynomials:
\begin{equation} \begin{aligned} \, \biggl(\frac{1-x}2\biggr)^\ell &=\sum_{k=0}^\ell\frac{2(k+\varepsilon) \Gamma(a+\ell+1)\Gamma(k+2\varepsilon)(-\ell)_k}{\Gamma(k+a+1) \Gamma(k+\ell+2\varepsilon+1)}\,P^{(a,b)}_k(x) \notag \\ &=\sum_{k=0}^\ell\frac{2(k+\varepsilon)\Gamma(a+\ell+1)\Gamma(k+2\varepsilon) (-\ell)_k}{\Gamma(a+1)\Gamma(k+\ell+2\varepsilon+1)k!}\, \biggl(\frac{\Gamma(a+1)k!}{\Gamma(k+a+1)}\,P^{(a,b)}_k(x)\biggr). \end{aligned} \end{equation} \tag{5.8}
The first equality in (5.8) can be found in handbooks; see [9], § 5.12.2.1 (it is § 5.11.2.5 in the Russian edition (2006)) and [15], 10.20 (3) (but note that the expression in the latter reference contains a typo: namely, the factor \Gamma(2n+\alpha+\beta+1) should be replaced by 2n+\alpha+\beta+1).

From the second equality in (5.8) we obtain

\begin{equation*} (f_\ell:g_k)=\frac{(\widetilde f_\ell:g_k)}{(L)_\ell(L+a)_\ell}=\frac{2(k+\varepsilon)\Gamma(a+\ell+1) \Gamma(k+2\varepsilon)(-\ell)_k}{(L)_\ell(L+a)_\ell\Gamma(a+1) \Gamma(k+\ell+2\varepsilon+1)k!}. \end{equation*} \notag

The lemma is proved.

Proof of Theorem 5.2. Our goal is to perform summation in (5.4) explicitly by using the formulae from Lemmas 5.4 and 5.5.

(i) We examine the case when m\geqslant1 and k\geqslant 1, and set \ell=k+n.

Let us rewrite the formulae in Lemmas 5.4 and 5.5:

\begin{equation*} \begin{aligned} \, (e_m:f_\ell) &=2(-1)^{\ell}(L+\varepsilon+m-1)\prod_{j=1}^{\ell-1}(2L+2\varepsilon+m+j-2)(m-j) \\ &=2(-1)^{k}(L+\varepsilon+m-1)(2L+2\varepsilon+m-1)_{k-1}\frac{(m-1)!}{(m-k)!} \\ &\qquad\times(2L+2\varepsilon+m+k-2)_n(k-m)_n \end{aligned} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, (f_\ell:g_k) &=\frac{2(k+\varepsilon)\Gamma(a+\ell+1) \Gamma(k+2\varepsilon)(-\ell)_k}{(L)_\ell(L+a)_\ell\Gamma(k+a+1) \Gamma(k+2\varepsilon+\ell+1)} \\ &=\frac{\Gamma(k+2\varepsilon)(-1)^k(a+1)_k}{(L)_k(L+a)_k\Gamma(2k+2\varepsilon)} \frac{(a+k+1)_n(k+1)_n}{(L+k)_n(L+a+k)_n(2k+2\varepsilon+1)_nn!}. \end{aligned} \end{equation*} \notag

Next, we put aside the factors that do not depend on n and then sum the resulting expressions over n=0,\dots,m-k, which corresponds to summation over \ell=k,\dots,m in (5.4). Then we obtain

\begin{equation*} \begin{aligned} \, &\sum_{n=0}^{m-k}\frac{(a+k+1)_n(k+1)_n(2L+2\varepsilon+m+k-2)_n(k-m)_n} {(L+k)_n(L+a+k)_n(2k+2\varepsilon+1)_nn!} \\ &\qquad={}_4F_3\biggl[\begin{matrix} k-m,\; k+1,\; k+a+1,\; 2L+2\varepsilon+m+k-2 \\ L+k,\; L+a+k,\; 2k+2\varepsilon+1\end{matrix}\biggm|1\biggr]. \end{aligned} \end{equation*} \notag
Taking the remaining factors into account gives us the required expression.

(ii) Now we examine the case when m\geqslant1 and k=0. The computation is similar to the previous one. Since (e_m:f_0)=0, formula (5.4) reduces to

\begin{equation*} (e_m:g_0)=\sum_{\ell=1}^m(e_m:f_\ell)(f_\ell:g_0). \end{equation*} \notag
It is convenient to set n:=\ell-1, so that n ranges from 0 to m-1. The lemmas show that
\begin{equation*} (e_m:f_{n+1})=-2(L+m-1)(2L+2\varepsilon)_n(1-m)_n \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, (f_{n+1}:g_0) &=\frac{2\varepsilon\Gamma(2\varepsilon)\Gamma(a+n+2)}{(L)_{n+1}(L+a)_{n+1}) \Gamma(a+1)\Gamma(2\varepsilon+n+2)} \\ &=\frac{a+1}{L(L+a)(2\varepsilon+1)}\,\frac{(a+2)_n}{(L+1)_n(L+a+1)_n(2\varepsilon+2)_n}. \end{aligned} \end{equation*} \notag
It follows that
\begin{equation*} (e_m:g_0)=-\frac{2(L+\varepsilon+m-1)(a+1)}{L(L+a)(2\varepsilon+1)} \sum_{n=0}^{m-1}\frac{(1-m)_n(2L+2\varepsilon+m-1)_n(a+2)_n} {(L+1)_n(L+a+1)_n(2\varepsilon+2)_n}, \end{equation*} \notag
which is the required expression.

Theorem 5.2 is proved.

§ 6. Elementary expression for functions g_k in the case of symplectic and orthogonal characters

Recall that we are dealing with the functions defined by (1.16):

\begin{equation*} g_k(t;a,\varepsilon,L):={}_4F_3\biggl[\begin{matrix}-k,\, k+2\varepsilon,\, L,\, L+a\\-t+L+\varepsilon,\, t+L+\varepsilon,\, a+1\end{matrix}\biggm|1\biggr], \qquad k=0,1,2,\dots\,. \end{equation*} \notag

In this section we consider the three special cases

\begin{equation*} (a,\varepsilon)= \biggl(\frac12,1\biggr), \biggl(\frac12, \frac12\biggr),\text{ or } \biggl(-\frac12,0\biggr), \end{equation*} \notag
which correspond to the series \mathcal{C}, \mathcal{B} and \mathcal{D}, and we introduce the alternate notation
\begin{equation*} \begin{gathered} \, g_k^{(\mathcal C)}(t;L):=g_k\biggl(t; \frac12, 1,L\biggr) ={}_4F_3\biggl[\begin{matrix}-k,\, k+2,\, L,\, L+\frac12 \\ -t+L+1,\, t+L+1,\, \frac32\end{matrix}\biggm|1\biggr], \\ g_k^{(\mathcal B)}(t;L):=g_k\biggl(t; \frac12, \frac12,L\biggr) ={}_4F_3\biggl[\begin{matrix}-k,\, k+1,\, L,\, L+\frac12 \\ -t+L+\frac12,\, t+L+\frac12,\, \frac32\end{matrix}\biggm|1\biggr] \end{gathered} \end{equation*} \notag
and
\begin{equation*} g_k^{(\mathcal D)}(t;L):=g_k\biggl(t; -\frac12, 0,L\biggr) ={}_4F_3\biggl[\begin{matrix}-k,\, k,\, L,\, L-\frac12 \\ -t+L,\,t+L,\, \frac12\end{matrix}\biggm|1\biggr]. \end{equation*} \notag

Theorem 6.1. The above three hypergeometric series admit closed elementary expressions

\begin{equation} g^{(\mathcal C)}_k(t;L) =\frac1{2(k+1)(1-2L)t}\biggl[\frac{(t-L)_{k+2}}{(t+L+1)_k} -\frac{(-t-L)_{k+2}}{(-t+L+1)_k}\biggr], \end{equation} \tag{6.1}
\begin{equation} g^{(\mathcal B)}_k(t;L) =\frac1{2(k+1/2)(1-2L)}\biggl[\frac{(t-L+1/2)_{k+1}}{(t+L+1/2)_k} +\frac{(-t-L+1/2)_{k+1}}{(-t+L+1/2)_k}\biggr] \end{equation} \tag{6.2}
and
\begin{equation} g^{(\mathcal D)}_k(t;L) =\frac12\biggl[\frac{(t-L+1)_k}{(t+L)_k}+\frac{(-t-L+1)_k}{(-t+L)_k}\biggr]. \end{equation} \tag{6.3}

Remark 6.2. In the very beginning of this research I expected that summation formulae for the series g^{(\mathcal{C})}_k(t;L), g^{(\mathcal{B})}_k(t;L) and g^{(\mathcal{D})}_k(t;L) should exist, so I attempted first to find them in the literature. As a result of this search I managed to find the first formula in the handbook [41] (p. 556 of the Russian edition § 7.5.3, formula 42). Unfortunately, that handbook does not provide any proof or a suitable reference. Then I asked Eric Rains, and he sent me with amazing speed a unified derivation of all three formulae in his letter [42]. I am very grateful to him for this help. I reproduce his argument below in a more detailed form, but with a different proof for the next lemma.

Lemma 6.3. (i) Suppose A is an even nonpositive integer. Then

\begin{equation} {}_3F_2\biggl[\begin{matrix}A,\, B,\, D\\ \frac12(A+B+1), \, E \end{matrix}\biggm|1\biggr]= {}_4F_3\biggl[\begin{matrix}\frac12 A,\, \frac12 B,\, E-D, \, D\\ \frac12(A+B+1), \, \frac12 E, \frac12(E+1) \end{matrix}\biggm|1\biggr]. \end{equation} \tag{6.4}

(ii) Suppose A is an odd negative integer. Then

\begin{equation} {}_3F_2\biggl[\begin{matrix}A,\, B,\, D\\ \frac12(A+B+1), \, E \end{matrix}\biggm|1\biggr]= \frac{E-2D}E\,{}_4F_3\biggl[\begin{matrix}\frac12(A+1),\, \frac12(B+1),\, E-D, \, D\\ \frac12(A+B+1), \, \frac12(E+1), \frac12 E +1 \end{matrix}\biggm|1\biggr]. \end{equation} \tag{6.5}

Proof. (i) This is formula (3.6) in Krattenthaler and Rao [23]. As explained there, it is obtained from Gauss’s quadratic transformation formula
\begin{equation} {}_2F_1\biggl[\begin{matrix}A,\, B\\ \frac12(A+B+1) \end{matrix}\biggm|z\biggr] ={}_2F_1\biggl[\begin{matrix}\frac12 A,\, \frac12 B\\ \frac12(A+B+1) \end{matrix} \biggm|4z(1-z)\biggr] \end{equation} \tag{6.6}
(see [15], § 2.11, formula 2) by the following simple procedure: 1) convert the hypergeometric series on both sides into (finite) sums; 2) multiply both sides of the equation by z^{D-1}(1-z)^{E-D-1}; 3) integrate term by term with respect to z for 0\leqslant z\leqslant 1; 4) interchange integration and summation; 5) use the beta integral to evaluate the integrals inside the sums; 6) convert the sums back into hypergeometric series.

(ii) We replace (6.6) with another quadratic transformation formula (see [15], § 2.11, formula 19):

\begin{equation} {}_2F_1\biggl[\begin{matrix}A,\, B\\ \frac12(A+B+1) \end{matrix}\biggm|z\biggr] =(1-2z)\,{}_2F_1\biggl[\begin{matrix}\frac12(A+1),\, \frac12(B+1)\\ \frac12(A+B+1) \end{matrix}\biggm|4z(1-z)\biggr], \end{equation} \tag{6.7}
then write 1-2z=(1-z)-z and apply the same procedure.

Note also that (6.7) can easily be obtained from (6.6) by differentiating with respect to z.

The lemma is proved.

Proof of Theorem 6.1. We apply the well-known transformation formula
\begin{equation*} \begin{aligned} \, &{}_4F_3\biggl[\begin{matrix}-k, \alpha_1,\alpha_2,\alpha_3\\\beta_1,\beta_2,\beta_3 \end{matrix}\biggm|1\biggr] =\frac{(-1)^k(\alpha_1)_k(\alpha_2)_k(\alpha_3)_k}{(\beta_1)_k(\beta_2)_k(\beta_3)_k} \\ &\qquad\qquad \times {}_4F_3\biggl[\begin{matrix}-k, \; -\beta_1-k+1,\; -\beta_2-k+1,\; -\beta_3-k+1 \\ -\alpha_1-k+1,\; -\alpha_2-k+1,\; -\alpha_3-k+1 \end{matrix}\biggm|1\biggr], \end{aligned} \end{equation*} \notag
which is obtained by summing a terminating series in the reverse order. This yields
\begin{equation} \begin{aligned} \, g_k(t;a,\varepsilon,L)&=\frac{(-1)^k(k+2\varepsilon)_k(L)_k(L+a)_k} {(-t+L+\varepsilon)_k(t+L+\varepsilon)_k(a+1)_k} \notag \\ &\times {}_4F_3\biggl[\begin{matrix}-k,\; -k-a,\; t-L-\varepsilon-k+1,\; -t-L-\varepsilon-k+1\\ -2k-2\varepsilon+1,\; -L-k+1,\; -L-k-a+1\end{matrix}\biggm|1\biggr]. \end{aligned} \end{equation} \tag{6.8}
In the three special cases under consideration the hypergeometric series on the right-hand side has the same form as in (6.4) or (6.5). However, the application of these formulae requires some caution, as it will soon become clear. Let us examine the three cases separately.

Case (\mathcal{C}): a=1/2 and \varepsilon=1. The series {}_4 F_3 in (6.8) has the same form as the one on the right-hand side of (6.5), with the parameters

\begin{equation*} A=-2k-1, \qquad B=-2k-2, \qquad D=-t-L-k \quad\text{and}\quad E=-2L-2k, \end{equation*} \notag
so that the corresponding series {}_3 F_2 on the left-hand side is
\begin{equation} {}_3F_2\biggl[\begin{matrix}-2k-1,\, -2k-2,\, -t-L-k\\ -2k-1, \, -2L-2k \end{matrix}\biggm|1\biggr]. \end{equation} \tag{6.9}
How can we interpret this expression? It is tempting to reduce it directly to a {}_2 F_1 series by removing the parameter -2k-1 from the upper and lower rows, but this would give an incorrect result. A correct argument is as follows.

We return to the initial {}_4F_3 series in (6.5), keep a as a parameter, but exclude \varepsilon by imposing the linear relation

\begin{equation*} -2k-2\varepsilon+1=(-k)+(-k-a)-\frac12, \quad \text{that is},\quad 2\varepsilon=a+\frac32. \end{equation*} \notag
The point is that the resulting {}_4F_3 series is still of the form (6.5). Next, it is a rational function of the parameter a and has no singularity at a=1/2 for generic L. Therefore, we can apply identity (6.5) and then pass to the limit as a tends to 1/2. This leads to the conclusion that (6.9) must be interpreted as
\begin{equation} {}_2F_1\biggl[\begin{matrix}-2k-2,\, -t-L-k\\ -2L-2k \end{matrix}\biggm|1\biggr] - (\text{the last term of the series expansion}). \end{equation} \tag{6.10}

Applying the Chu-Vandermonde identity

\begin{equation} {}_2F_1\biggl[\begin{matrix}-N,\, \alpha\\ \beta \end{matrix}\biggm|1\biggr]=\frac{(\beta-\alpha)_N}{(\beta)_N}, \qquad N=0,1, 2,\dots, \quad \beta\ne0,-1,\dots, -N \end{equation} \tag{6.11}
(see [2], Corollary 2.2.3), to the series {}_2F_1 we see that (6.10) is equal to
\begin{equation*} \frac{(t-L-k)_{2k+2}-(-t-L-k)_{2k+2}}{(-2L-2k)_{2k+2}}. \end{equation*} \notag

Next, we have to multiply this by

\begin{equation*} \frac{(-1)^k(k+2)_k(L)_k(L+1/2)_k}{(-t+L+1)_k(t+L+1)_k(3/2)_k}\cdot \frac{-2L-2k}{2t}, \end{equation*} \notag
where the first fraction comes from (6.8) and the second fraction comes from {E/(E-2D)} (see (6.5)). After simplification this finally gives the required expression (6.1).

Case (\mathcal{B}): a=1/2 and \varepsilon=1/2. Now the {}_4 F_3 series in (6.8) has the same form as on the right-hand side of (6.4), with the parameters

\begin{equation*} A=-2k, \qquad B=-2k-1, \qquad D=-t-L-k+\frac12 \quad\text{and}\quad E=-2L-2k+1, \end{equation*} \notag
so that the corresponding {}_3 F_2 series on the left-hand side is
\begin{equation*} {}_3F_2\biggl[\begin{matrix}-2k,\, -2k-1,\, -t-L-k+\frac12\\ -2k, \, -2L-2k+1 \end{matrix}\biggm|1\biggr]. \end{equation*} \notag
By the same argument as above the correct elimination of the parameter -2k leads to
\begin{equation*} {}_2F_1\biggl[\begin{matrix}-2k-1,\, -t-L-k+\frac12\\ -2L-2k+1 \end{matrix}\biggm|1\biggr] - (\text{the last term of the series expansion}). \end{equation*} \notag
Applying the Chu-Vandermonde identity (6.11) to this {}_2F_1 series we obtain
\begin{equation*} \frac{(t-L-k+1/2)_{2k+1}+(-t-L-k+1/2)_{2k+1}}{(-2L-2k+1)_{2k+1}}. \end{equation*} \notag
Next, we multiply this by
\begin{equation*} \frac{(-1)^k(k+1)_k(L)_k(L+1/2)_k}{(-t+L+1/2)_k(t+L+1/2)_k(3/2)_k}, \end{equation*} \notag
and after simplification this finally gives the required expression (6.2).

Case (\mathcal{D}): a=-1/2 and \varepsilon=0. Again, the {}_4 F_3 series in (6.8) has the same form as on the right-hand side of (6.4), but now the parameters are

\begin{equation*} A=-2k, \qquad B=-2k+1, \qquad D=-t-L-k+1 \quad\text{and}\quad E=-2L-2k+2. \end{equation*} \notag
According to (6.4), this leads to the {}_3 F_2 series
\begin{equation*} {}_3F_2\biggl[\begin{matrix}-2k,\, -2k+1,\, -t-L-k+1\\ -2k+1, \, -2L-2k+2 \end{matrix}\biggm|1\biggr]. \end{equation*} \notag
Here the correct elimination of the parameter -2k+1 is achieved by the limit transition
\begin{equation} \lim_{a\to-1/2}{}_3F_2\biggl[\begin{matrix}-2k,\, -2k-2a,\, -t-L-k+\frac34-\frac12 a\\ -2k-a+\frac12, \, -2L-2k+2 \end{matrix}\biggm|1\biggr]. \end{equation} \tag{6.12}
The limit in (6.12) can be taken termwise. The result differs from the expansion of the series
\begin{equation} {}_2F_1\biggl[\begin{matrix}-2k,\, -t-L-k+1\\ -2L-2k+2 \end{matrix}\biggm|1\biggr] \end{equation} \tag{6.13}
in the last term only. Namely, in (6.12), the last term is
\begin{equation*} \lim_{a\to-1/2}\frac{(-2k)_{2k}(-2k-2a)_{2k}(-t-L-k+3/4-a/2)} {(-2k-a+1/2)_{2k}(-2L-2k+1)_{2k}(2k)!} =2\, \frac{(-t-L-k+1)_{2k}}{(-2L-2k+2)_{2k}}, \end{equation*} \notag
while the last term in (6.13) is
\begin{equation} \frac{(-t-L-k+1)_{2k}}{(-2L-2k+2)_{2k}}. \end{equation} \tag{6.14}
We conclude that the limit in (6.12) is equal to the sum of (6.13) and (6.14):
\begin{equation} {}_2F_1\biggl[\begin{matrix}-2k,\, -t-L-k+1\\ -2L-2k+2 \end{matrix}\biggm|1\biggr] +\frac{(-t-L-k+1)_{2k}}{(-2L-2k+2)_{2k}}. \end{equation} \tag{6.15}

Using the Chu-Vandermonde identity (6.11) we obtain that (6.15) equals

\begin{equation*} \frac{(t-L-k+1)_{2k}+(-t-L-k+1)_{2k}}{(-2L-2k+2)_{2k}}. \end{equation*} \notag
Next, we multiply this by
\begin{equation*} \frac{(-1)^k(k)_k(L)_k(L-1/2)_k}{(-t+L)_k(t+L)_k(1/2)_k} \end{equation*} \notag
and after simplification we obtain the required expression (6.3).

Theorem 6.1 is proved.

§ 7. Elementary expression for the transition coefficients (e_m:g_k) in the case of symplectic and orthogonal characters

It will be convenient for us to introduce the alternate notation

\begin{equation*} E(m,k)=E(m,k;a,\varepsilon,L) \end{equation*} \notag
for the transition coefficients (e_m:g_k).

As in § 6, we examine the three distinguished cases when the parameters (a,\varepsilon) correspond to characters of the series \mathcal{C}, \mathcal{B} and \mathcal{D}. We show that then the formulae obtained in Theorem 5.2 are simplified: the {}_4F_3 hypergeometric series that appear in the formulae admit closed elementary expressions. To distinguish between these three cases of \mathcal{C}, \mathcal{B} and \mathcal{D} we introduce the additional superscripts (\mathcal{C}), (\mathcal{B}) and (\mathcal{D}), respectively.

Theorem 7.1. (i) If m\geqslant k\geqslant1, then

\begin{equation*} \begin{aligned} \, E^{(\mathcal C)}(m,k) &:=E\biggl(m,k;\frac12,1,L\biggr) \\ &=\frac{2(k+1)(m-1)!\,(2L-2)(2L-1)(L+m)(2L+m-k-3)!} {(m-k)!\,(2L+m)!}, \\ E^{(\mathcal B)}(m,k) &:=E\biggl(m,k;\frac12,\frac12,L\biggr) \\ &=\frac{2(k+1/2)(m-1)!\,(2L-2)(2L-1)(2L+m-k-3)!}{(m-k)!\,(2L+m-1)!} \end{aligned} \end{equation*} \notag
and
\begin{equation*} E^{(\mathcal D)}(m,k) :=E\biggl(m,k;-\frac12,0,L\biggr)=\frac{2(m-1)!\,(2L-2)(2L+m-k-3)!}{(m-k)!\,(2L+m-2)!}. \end{equation*} \notag

(ii) If m\geqslant1 and k=0, then

\begin{equation*} \begin{aligned} \, E^{(\mathcal C)}(m,0) &:=E\biggl(m,0;\frac12,1,L\biggr)=-\frac{2(m+4L-3)(L+m)}{(2L+m)(2L+m-1)(2L+m-2)}, \\ E^{(\mathcal B)}(m,0) &:=E\biggl(m,0;\frac12,\frac12,L\biggr)=-\frac{2m+6L-5}{(2L+m-1)(2L+m-2)} \end{aligned} \end{equation*} \notag
and
\begin{equation*} E^{(\mathcal D)}(m,0) :=E\biggl(m,0;-\frac12,0,L\biggr)=-\frac{2}{2L+m-2}. \end{equation*} \notag

Recall that E(m,k)=0 for k>m, so that the theorem covers all possible cases. The proof is based on the following lemma.

Lemma 7.2. Let n=0,1,2,\dots . Then the following two formulae hold:

\begin{equation} {}_4F_3\biggl[\begin{matrix}-n,\, A,\, A+\frac12,\, 2B+n \\B,\, B+\frac12,\, 2A+1\end{matrix}\biggm|1\biggr] =\frac{\Gamma(2B-2A+n)\Gamma(2B)}{\Gamma(2B-2A)\Gamma(2B+n)} \end{equation} \tag{7.1}
and
\begin{equation} {}_4F_3\biggl[\begin{matrix}-n,\, A+\frac12,\, A+1,\, 2B+n \\B+\frac12,\, B+1,\, 2A+1\end{matrix}\biggm|1\biggr] =\frac{B}{(B+n)}\,\frac{\Gamma(2B-2A+n)\Gamma(2B)}{\Gamma(2B-2A)\Gamma(2B+n)}. \end{equation} \tag{7.2}

Proof. For the first formula, see Slater [49], p. 65, (2.4.2.2), and p. 245 (III.20). The second formula is derived from the first using the transformation (2.4.1.7) in [49], which holds for any balanced terminating series {}_4F_3(1). In slightly modified notation it reads
\begin{equation} {}_4F_3\biggl[\begin{matrix}-n,\, a_1,\, a_2,\, x \\b_1,\, b_2,\, y\end{matrix}\biggm|1\biggr]=\frac{(b_1-x)_n(b_1-u)_n}{(b_1)_n(b_1-x-u)_n} {}_4F_3\biggl[\begin{matrix}-n,\, a_1-u,\, a_2-u,\, x \\b_1-u,\, b_2-u,\, y\end{matrix}\biggm|1\biggr], \end{equation} \tag{7.3}
where
\begin{equation*} u:=a_1+a_2-y. \end{equation*} \notag
We specialize it to
\begin{equation*} a_1=A+\frac12,\ \ \ a_2=A+1, \ \ \ x=2B+n, \ \ \ b_1=B+\frac12, \ \ \ b_2=B+1 \ \ \ \text{and}\ \ \ y=2A+1. \end{equation*} \notag

For other ways to derive the formulae, see [17], (3.20) and (3.21), and further references therein.

The lemma is proved.

Proof of Theorem 7.1. (i) Let us show that Lemma 7.2 can be applied to the {}_4F_3 series displayed in claim (ii) of Theorem 5.2.

Indeed, the series in question is

\begin{equation*} {}_4F_3\biggl[\begin{matrix} k-m,\; k+1,\; k+a+1,\; 2L+2\varepsilon+m+k-2 \\ L+k,\; L+a+k,\; 2k+2\varepsilon+1\end{matrix}\biggm|1\biggr]. \end{equation*} \notag
Look at the triple (k+1, k+a+1, 2k+2\varepsilon+1). It takes the following form:
\begin{equation*} (k+1, k+a+1, 2k+2\varepsilon+1)= \begin{cases} \bigl(k+1, k+\frac32, 2k+3\bigr) & \text{in case } (\mathcal C), \\ \bigl(k+1, k+\frac32, 2k+2\bigr) & \text{in case }(\mathcal B), \\ \bigl(k+1, k+\frac12, 2k+1\bigr) & \text{in case }(\mathcal D). \end{cases} \end{equation*} \notag
It follows that formula (7.1) is applicable in cases (\mathcal C) and (\mathcal D), while formula (7.2) is applicable in case (\mathcal B). This leads to the required expressions.

(ii) Now we turn to the {}_4F_3 series from part (ii) of Theorem 5.2, where we are again interested in the three special cases. Formulae (7.1) and (7.2) are no longer applicable to these series. Suitable summation formulae can perhaps be extracted from the literature, but this author has not succeeded in this. Here is another way to solve the problem.

Observe that e_m(\infty)=0 for each m\geqslant1, while g_k(\infty)=1 for all k. It follows that

\begin{equation*} E(m,0)=-\sum_{k=1}^m E(m,k), \qquad m=1,2,\dots\,. \end{equation*} \notag
Therefore, the formulae in claim (ii) are equivalent to the following three identities:
\begin{equation*} \begin{aligned} \, &\sum_{k=1}^m \frac{(2k+2)(m-1)!\,(2L-2)(2L-1)(L+m)(2L+m-k-3)!} {(m-k)!\,(2L+m)!} \\ &\qquad=\frac{2(m+4L-3)(L+m)}{(2L+m)(2L+m-1)(2L+m-2)}, \\ &\sum_{k=1}^m\frac{(2k+1)(m-1)!\,(2L-2)(2L-1)(2L+m-k-3)!}{(m-k)!\,(2L+m-1)!} \\ &\qquad=\frac{2m+6L-5}{(2L+m-1)(2L+m-2)} \end{aligned} \end{equation*} \notag
and
\begin{equation*} \sum_{k=1}^m \frac{2(m-1)!\,(2L-2)(2L+m-k-3)!}{(m-k)!\,(2L+m-2)!}=\frac{2}{2L+m-2}. \end{equation*} \notag

Set M:=2L-2; after simplification one can rewrite these identities as

\begin{equation*} \begin{aligned} \, S^{(\mathcal C)}(m,M) &:=M\sum_{k=1}^m \frac{(M+m-k-1)!\,(k+1)}{(m-k)!}=\frac{(M+m-1)!\,(m+2M+1)}{(m-1)!\,(M+1)}, \\ S^{(\mathcal B)}(m,M) &:=M\sum_{k=1}^m \frac{(M+m-k-1)!\,(2k+1)}{(m-k)!}=\frac{(M+m-1)!\,(2m+3M+1)}{(l-1)!\,(M+1)} \end{aligned} \end{equation*} \notag
and
\begin{equation*} S^{(\mathcal D)}(m,M) :=M\sum_{k=1}^m \frac{(M+m-k-1)!\,}{(m-k)!}=\frac{(M+m-1)!}{(m-1)!}. \end{equation*} \notag

The identity for S^{(\mathcal{D})}(m,M) is checked by induction on m, using the relation

\begin{equation*} S^{(\mathcal D)}(m+1,M)=S^{(\mathcal D)}(m,M)+\frac{M(M+m-1)!}{m!}. \end{equation*} \notag

Next, the other two sums, S^{(\mathcal{B})}(m,M) and S^{(\mathcal{C})}(m,M), are reduced to S^{(\mathcal{D})}(m,M) using the relations

\begin{equation*} \begin{aligned} \, &(2m+1)S^{(\mathcal D)}(m,M)-S^{(\mathcal B)}(m,M) \\ &\qquad=2M\sum_{k=0}^{m-1}\frac{(M+m-k-1)!}{(m-k-1)!}=\frac{2M}{M+1}S^{(\mathcal D)}(m-1,M+1) \end{aligned} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, &(m+1)S^{(\mathcal D)}(m,M)-S^{(\mathcal C)}(m,M) \\ &\qquad=M\sum_{k=0}^{m-1}\frac{(M+m-k-1)!}{(m-k-1)!}=\frac{M}{M+1}S^{(\mathcal D)}(m-1,M+1). \end{aligned} \end{equation*} \notag

Theorem 7.1 is proved.

§ 8. Proof of Theorem D and application to discrete splines

8.1. Proof of Theorem D

The results of computations in §§ 6 and 7 are summarized below in Theorem 8.1 (this is a detailed version of Theorem D in § 1.9). To state it we recall the relevant definitions and notation.

\bullet We deal with the entries \Lambda^N_K(\nu,\varkappa) of the stochastic matrix \Lambda^N_K, where \nu ranges over \operatorname{Sign}^+_N, \varkappa ranges over \operatorname{Sign}^+_K, and N>K\geqslant1; see Definition 1.4. Originally, the matrix depends on a pair (a,b) of Jacobi parameters, but it is convenient for us to replace the second parameter b by \varepsilon:=\frac12(a+b+1).

\bullet We are particularly interested in the three distinguished cases, which are linked to characters of the series \mathcal{C}, \mathcal{B} and \mathcal{D}. In terms of the parameters (a,\varepsilon) this means that

\begin{equation} (a,\varepsilon) =\begin{cases} \bigl(\frac12,1\bigr), \\ \bigl(\frac12,\frac12\bigr), \\ \bigl(-\frac12,0\bigr), \end{cases} \end{equation} \tag{8.1}
respectively.

\bullet We set L:=N-K+1, so that L is an integer \geqslant2. In (1.18) we introduced a grid \mathbb{A}(\varepsilon,L) on \mathbb{R}_{>0} depending on \varepsilon and L:

\begin{equation*} \mathbb A(\varepsilon,L):=\{A_1,A_2,\dots\}, \quad\text{where } A_m:=L+\varepsilon+m-1, \quad m=1,2,\dots\,. \end{equation*} \notag

\bullet In § 1.8 we introduced the space \mathcal{F}(\varepsilon,L) formed by even rational functions with simple poles in (-\mathbb{A}(\varepsilon,L))\cup\mathbb{A}(\varepsilon,L). For a rational function \phi\in \mathcal{F}(\varepsilon,L), we denote by \operatorname{Res}_{t=A_m}(\phi(t)) its residue at the point t=A_m of the grid \mathbb{A}(\varepsilon,L).

\bullet In (1.16) we introduced the even rational functions g_k(t)=g_k(t;a,\varepsilon,L) with indices k=0,1,2,\dots and parameters (a,\varepsilon). In the general case g_k(t) is given by the terminating hypergeometric series {}_4F_3. For the special values (8.1) these functions admit explicit elementary expressions (Theorem 6.1).

\bullet In Theorem 5.2 we computed the transition coefficients (e_m:g_k), renamed to E(m,k) in the beginning of § 7. For the special values (8.1) these coefficients admit an explicit elementary expression (Theorem 7.1).

\bullet In (1.14), to each signature \nu\in\operatorname{Sign}^+_N we assigned its characteristic function

\begin{equation} F_N(t)=F_N(t;\nu;\varepsilon):=\prod_{i=1}^N\frac{t^2-(N-i+\varepsilon)^2}{t^2-(\nu_i+N-i+\varepsilon)^2}. \end{equation} \tag{8.2}

\bullet For \varkappa\in\operatorname{Sign}^+_K we abbreviate k_i:=\varkappa_i+K-i, where i=1,\dots,K, and set

\begin{equation*} d_K(\varkappa;\varepsilon):=\prod_{1\leqslant i<j\leqslant K}((k_i+\varepsilon)^2-(k_j+\varepsilon)^2). \end{equation*} \notag
This agrees with the definition (1.15).

Theorem 8.1. In the three distinguished cases (8.1) the following formula holds:

\begin{equation} \frac{\Lambda^N_K(\nu,\varkappa)}{d_K(\varkappa;\varepsilon)}=\det[M(i,j)]_{i,j=1}^K, \end{equation} \tag{8.3}
where [M(i,j)] is a K\times K matrix whose entries are given by the following elementary expressions, which are in fact finite sums:
  • • if i<K or i=K but \varkappa_K>0, then
    \begin{equation} M(i,j)=\sum_{m\geqslant k_i}\operatorname*{Res}_{t=A_m}\bigl(g_{K-j}(t)F_N(t)\bigr) E(m,k_i); \end{equation} \tag{8.4}
  • • if i=K and \varkappa_K=0, then
    \begin{equation} M(i,j)=M(K,j)=1+\sum_{m\geqslant 1}\operatorname*{Res}_{t=A_m}\bigl(g_{K-j}(t)F_N(t)\bigr) E(m,0). \end{equation} \tag{8.5}

Proof. By Theorem B,
\begin{equation*} \frac{\Lambda^N_K(\nu,\varkappa)}{d_K(\varkappa;\varepsilon)}=\det[(g_{k-j}F_N: g_{k_i})]_{i,j=1}^K. \end{equation*} \notag
Next, recall that Proposition 5.1 gives a summation formula for the transition coefficients (\phi:g_k) (see (5.1)). We set \phi=g_{k-j}F_N and k=k_i. Then (5.1) takes the form indicated in (8.4) and (8.5). From Theorems 6.1 and 7.1 we obtain elementary expressions for the functions g_{K-j}(t) and the coefficients E(m,k_i). The functions F_N(t) are also given by an elementary expression (see (8.2)).

The theorem is proved.

8.2. A symplectic and an orthogonal version of the discrete \mathrm{B}-spline

We write the formulae in Theorem 8.1 for the particular case K=1 in a more explicit form.

Corollary 8.2. Let \nu\in\operatorname{Sign}^+_N and k\in\operatorname{Sign}^+_1=\{0,1,2,\dots\}.

(i) For (a,\varepsilon)=(1/2,1) (the series \mathcal{C})

\begin{equation*} \begin{aligned} \, &\Lambda^N_1(\nu,k) =2(k+1)(N-1)(2N-1) \\ &\times\sum_{i\colon \nu_i-i+1\geqslant k}\frac{(\nu_i-i+2-k)_{2N-3}}{(\nu_i+N-i+1)\prod_{r\colon r\ne i}((\nu_i+N-i+1)^2-(\nu_r+N-r+1)^2)}, \\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad k\geqslant1, \end{aligned} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, \Lambda^N_1(\nu,0) &=1-\sum_{i\colon \nu_i-i\geqslant0}\frac{2(\nu_i+4N-i-2)(\nu_i+N-i+1)}{(\nu_i+2N-i+1)(\nu_i+2N-i)(\nu_i+2N-i-1)} \\ &\qquad\qquad\qquad\qquad\times\operatorname*{Res}_{t=\nu_i+N-i+1} F_N(t). \end{aligned} \end{equation*} \notag

(ii) For (a,\varepsilon)=(1/2,1/2) (the series \mathcal{B})

\begin{equation*} \begin{aligned} \, &\Lambda^N_1(\nu,k)=2\biggl(k+\frac12\biggr)(N-1)(2N-1) \\ &\times\sum_{i\colon \nu_i-i+1\geqslant k}\frac{(\nu_i-i+2-k)_{2N-3}}{(\nu_i\,{+}\,N\,{-}\,i\,{+}\,1/2)\prod_{r\colon r\ne i}((\nu_i\,{+}\,N\,{-}\,i\,{+}\,1/2)^2{-}\,(\nu_r\,{+}\,N\,{-}\,r\,{+}\,1/2)^2)}, \\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad k\geqslant1, \end{aligned} \end{equation*} \notag
and
\begin{equation*} \Lambda^N_1(\nu,0)=1-\sum_{i\colon \nu_i-i\geqslant0}\frac{2(\nu_i-i+1)+6N-5)}{(\nu_i+2N-i)(\nu_i+2N-i-1)} \operatorname*{Res}_{t=\nu_i+N-i+1/2} F_N(t). \end{equation*} \notag

(iii) For (a,\varepsilon)=(-1/2,0) (the series \mathcal{D})

\begin{equation*} \Lambda^N_1(\nu,k)=2(N-1)\,\sum_{i\colon \nu_i-i+1\geqslant k}\frac{(\nu_i-i+2-k)_{2N-3}}{\prod_{r\colon r\ne i}((\nu_i\,{+}\,N\,{-}\,i)^2{-}\,(\nu_r\,{+}\,N\,{-}\,r)^2)}, \qquad k\geqslant1, \end{equation*} \notag
and
\begin{equation*} \Lambda^N_1(\nu,0)=1-2\sum_{i\colon \nu_i-i\geqslant0}\frac1{\nu_i+2N-i-1} \operatorname*{Res}_{t=\nu_i+N-i} F_N(t). \end{equation*} \notag

Proof. In the case K=1 the formulae in Theorem 8.1 are slightly simplified. Namely, the factor d_K(\varkappa;\varepsilon) on the left-hand side of (8.3) disappears (because it becomes the empty product and hence is equal to 1); the factor g_{K-j}(t) on the right-hand side of (8.4) and (8.5) also disappears (because it turns to g_0(t)\equiv1). Taking this into account we obtain
\begin{equation*} \Lambda^N_1(\nu,k)= \begin{cases} \displaystyle \sum_{m\geqslant k}\operatorname*{Res}_{t=A_m}(F_N(t)) E(m,k), & k\geqslant1, \\ \displaystyle 1+\sum_{m\geqslant 1}\operatorname*{Res}_{t=A_m}(F_N(t)) E(m,0), & k=0. \end{cases} \end{equation*} \notag

Further, now we have A_m=N+\varepsilon+m-1, because K=1 implies that L=N. Then we substitute the values of the coefficients E(m,k) from Theorem 7.1 and compute the residues of F_N(t) from (8.2), which is easy. This leads to the expressions above.

The corollary is proved.

Putting aside the endpoint k=0, we see that for \nu fixed, \Lambda^N_1(\nu,k) is given by a piecewise polynomial function in k of degree independent of \nu (this degree is {2N-2} for the series \mathcal{C} and \mathcal{B}, and 2N-3 for the series \mathcal{D}). Note that the structure of the above formulae is similar to that of the discrete \mathrm{B}-spline; cf. (1.7) and (1.4).

Likewise, for K\geqslant2 the coefficients \Lambda^N_K(\nu,\varkappa) (where K=2,\dots, N-1) can be written as the determinants of K\times K matrices whose entries are one-dimensional piecewise polynomial functions.

The appearance of piecewise polynomial expressions is not too surprising. Similar effects arise in other spectral problems in representation theory, such as weight multiplicities or the decomposition of tensor products (see, for example, Billey, Guillemin and Rassart [4] and Rassart [43]). A specific feature of our problem, however, is that the description of the multidimensional picture can be expressed in terms of one-dimensional spline-type functions and, moreover, we end up with elementary formulae whose structure is much simpler than, say, that of the Kostant partition function for weight multiplicities.

§ 9. Concluding remarks

9.1. Contour integral representation

The large N limit transition mentioned in the introduction (§ 1.10, remark 5) is based on the possibility to transform the sums in (8.4) and (8.5) into contour integrals. This contour integral representation is deduced from the next proposition, which is also of some independent interest.

Proposition 9.1. We keep to the assumptions and notation of § 8.1. Let E(m,k) denote the transition coefficients given by the formulae in Theorem 7.1. We assume that L\in\{2,3,\dots\} is fixed.

(i) There exists a function R(t,k) of the variables t\in\mathbb{C} and k\in\{0,1,2,\dots\}, such that R_k(t):=R(t,k) is a rational function of t for each fixed value of k and

\begin{equation*} E(m,k)=R(A_m,k), \qquad m=1, 2,3,\dots\,. \end{equation*} \notag

(ii) These properties determine R(t,k) uniquely.

(iii) For k=1,2,\dots the function R_k(t) does not have poles in the right half-plane

\begin{equation*} \mathcal H(\varepsilon,L):=\{t\in\mathbb C\colon \operatorname{Re}t>L+\varepsilon-1\}. \end{equation*} \notag

We recall that

\begin{equation} A_m=L+\varepsilon+m-1, \quad \text{where } \varepsilon=1,\frac12,0. \end{equation} \tag{9.1}

Proof of Proposition 9.1. (i) To define R(t,k) we use (9.1) as a prompt and simply replace m by t-L-\varepsilon+1 in the formulae in Theorem 7.1. For k=0 we obviously obtain a rational function in t. For k\geqslant1 we write down the result by using the gamma function instead of factorials (to distinguish between the series \mathcal{C}, \mathcal{B} and \mathcal{D} we add the corresponding superscript, as before):
\begin{equation*} \begin{aligned} \, R^{(\mathcal C)}(t,k) &=2(k+1)(2L-2)(2L-1)\,\frac{t\,\Gamma(t-L)\Gamma(t+L-k-2)} {\Gamma(t-L-k+1)\Gamma(t+L+1)}, \\ R^{(\mathcal B)}(t,k) &=2\biggl(k+\frac12\biggr)(2L-2)(2L-1)\,\frac{\Gamma(t-L+1/2)\Gamma(t+L-k-3/2)} {\Gamma(t-L-k+3/2)\Gamma(t+L+1/2)} \end{aligned} \end{equation*} \notag
and
\begin{equation*} R^{(\mathcal D)}(t,k) =2(2L-2)\,\frac{\Gamma(t-L+1)\Gamma(t+L-k-1)} {\Gamma(t-L-k+2)\Gamma(t+L)}. \end{equation*} \notag
The property of rationality becomes obvious from these expressions: we use the fact that if \alpha and \beta are two constants such that \alpha-\beta\in\mathbb{Z}, then the ratio \Gamma(t+\alpha)/\Gamma(t+\beta) is a rational function of t.

(ii) The uniqueness claim is obvious.

(iii) In each of the three variants there are different ways to factorize the expression containing the four gamma functions into the product of two fractions of the form

\begin{equation*} \frac{\Gamma(t+\alpha_1)}{\Gamma(t+\beta_1)}\cdot \frac{\Gamma(t+\alpha_2)}{\Gamma(t+\beta_2)}, \end{equation*} \notag
where \alpha_1-\beta_1 and \alpha_2-\beta_2 are integers. For our purposes it is convenient to form the first fraction by taking the second \Gamma-factor in the numerator and the first \Gamma-factor in the denominator. Then the first fraction is a polynomial in t. As for the second fraction, it has the form
\begin{equation*} \frac{\Gamma(t-L-\varepsilon+1)}{\Gamma(t+L+\varepsilon)}=\prod_{j=1}^{2L+2\varepsilon}\frac1{t-(L+\varepsilon-j)} \end{equation*} \notag
and therefore it is regular in \mathcal H(\varepsilon,L).

The proposition is proved.

9.2. A biorthogonal system of rational functions

Let \mathcal{F}^0(\varepsilon,L) denote the codimension 1 subspace of \mathcal{F}(\varepsilon,L) formed by the functions vanishing at infinity. As in the previous subsection, we fix L\geqslant2 and assume that \varepsilon takes one of the three values 1, 1/2 and 0. Because g_k(\infty)=1, the functions g^0_k(t):=g_k(t)-1, where k=1,2,\dots, form a basis of \mathcal{F}^0(\varepsilon,L). The functions R(t,k) and the half-plane \mathcal H(\varepsilon,L) were introduced in Proposition 9.1.

Proposition 9.2. The two systems of rational function \{g_k^0(t)\} and \{R_k(t)\} are biorthogonal in the following sense

\begin{equation*} \frac1{2\pi i}\oint_C g^0_\ell(t)R_k(t)\,dt=\delta_{k\ell}, \qquad k,\ell=1,2,\dots, \end{equation*} \notag
where one can take as C an arbitrary simple contour in \mathcal H(\varepsilon,L) with the property that it goes in the positive direction and encircles all the poles of g_\ell(t).

Proof. The left-hand side is equal to the sum of residues of the integrand. Because R_k(t) is regular in \mathcal H(\varepsilon,L), we can replace g^0_\ell(t) by g_\ell(t) and write this sum as
\begin{equation} \sum_{m=1}^\infty \Bigl(\,\operatorname*{Res}_{t=A_m}g_\ell(t)\Bigr) R_k(A_m)=\sum_{m=1}^\infty \Bigl(\,\operatorname*{Res}_{t=A_m}g_\ell(t)\Bigr)E(m,k), \end{equation} \tag{9.2}
where equality holds because R_k(A_m)=E(m,k) (see Proposition 9.1, (i)).

On the other hand, by the definition of the coefficients E(m,k)=(e_m:g_k), for any function f\in\mathcal{F}(\varepsilon,L) one has

\begin{equation*} (f:g_k)=\sum_{m=1}^\infty \Bigl(\,\operatorname*{Res}_{t=A_m}f(t)\Bigr) E(m,k), \qquad k=1,2,3, \dots\,. \end{equation*} \notag

Applying this to f=g_\ell we conclude that (9.2) is equal to (g_\ell:g_k)=\delta_{k\ell}, as required.

The proposition is proved.

9.3. The degeneration g_k(t) \to \widetilde P^{(a,b)}_k(x)

Let

\begin{equation*} \widetilde P^{(a,b)}_k(x)=\frac{P^{(a,b)}_k(x)}{P^{(a,b)}_k(1)}, \qquad k=0,1,2,\dots, \end{equation*} \notag
be the Jacobi polynomials with parameters (a,b), normalized at the point x=1. Next, consider the rational functions g_k(t;a,\varepsilon,L) given by the terminating hypergeometric series (1.16). Recall that \varepsilon=\frac12(a+b+1). We rescale t=sL, where s is a new variable, which is related to x via
\begin{equation*} x=\frac{s^2+1}{s^2-1}=\frac12\biggl(\frac{s+1}{s-1}+\frac{s-1}{s+1}\biggr). \end{equation*} \notag
Under these assumptions, the following limit relation holds:
\begin{equation*} \lim_{L\to\infty}g_k(sL; a,\varepsilon,L)=\widetilde P^{(a,b)}_k(x), \qquad k=0,1,2,\dots\,. \end{equation*} \notag
It is easily verified on the basis of (1.16) and the expression for the Jacobi polynomials in terms of the Gauss hypergeometric function.

9.4. A three-term recurrence relations for the functions g_k(t)

Wilson’s thesis [55] contains a list of three-term recurrence relations satisfied by every terminated balanced hypergeometric series

\begin{equation*} F={}_4F_3\biggl[\begin{matrix}a,\, b,\, c,\, d \\e,\, f,\, g\end{matrix}\biggm|1\biggr]. \end{equation*} \notag
One of them (formula (4.9) in [55]) reads
\begin{equation*} \begin{aligned} \, &\frac{a(e-b)(f-b)(g-b)}{a-b+1}(F(a^+,b^-)-F) \\ &\qquad-\frac{b(e-a)(f-a)(g-a)}{b-a+1}(F(a^-,b^+)-F)+cd(a-b)F=0. \end{aligned} \end{equation*} \notag
This formula is applicable to the {}_4F_3 series defining the rational functions g_k(t) (see (1.16)). It follows that the functions g_k(t) satisfy a three-term recurrence relation, which is of the type investigated by Zhedanov [56].


Bibliography

1. M. Aissen, I. J. Schoenberg and A. M. Whitney, “On the generating functions of totally positive sequences. I”, J. Anal. Math., 2 (1952), 93–103  crossref  mathscinet  zmath
2. G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp.  crossref  mathscinet  zmath
3. W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Math. and Math. Phys., 32, Cambridge Univ. Press, Cambridge, 1935, vii+108 pp.  mathscinet  zmath
4. S. Billey, V. Guillemin and E. Rassart, “A vector partition function for the multiplicities of \mathfrak{sl}_k\mathbb C”, J. Algebra, 278:1 (2004), 251–293  crossref  mathscinet  zmath
5. A. Borodin and G. Olshanski, “The boundary of the Gelfand-Tsetlin graph: a new approach”, Adv. Math., 230:4–6 (2012), 1738–1779  crossref  mathscinet  zmath
6. A. Borodin and G. Olshanski, “The Young bouquet and its boundary”, Mosc. Math. J., 13:2 (2013), 193–232  mathnet  crossref  mathscinet  zmath
7. A. Borodin and G. Olshanski, Representations of the infinite symmetric group, Cambridge Stud. Adv. Math., 160, Cambridge Univ. Press, Cambridge, 2017, vii+160 pp.  crossref  mathscinet  zmath
8. R. P. Boyer, “Characters and factor representations of the infinite dimensional classical groups”, J. Operator Theory, 28:2 (1992), 281–307  mathscinet  zmath
9. Yu. A. Brychkov, Handbook of special functions. Derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL, 2008, xx+680 pp.  crossref  mathscinet  zmath
10. G. Budakçi and H. Oruç, “Further properties of quantum spline spaces”, Mathematics, 8:10 (2020), 1770, 10 pp.  crossref
11. H. B. Curry and I. J. Schoenberg, “On Pólya frequency functions. IV. The fundamental spline functions and their limits”, J. Anal. Math., 17 (1966), 71–107  crossref  mathscinet  zmath
12. M. Defosseux, “Orbit measures, random matrix theory and interlaced determinantal processes”, Ann. Inst. Henri Poincaré Probab. Stat., 46:1 (2010), 209–249  crossref  mathscinet  zmath  adsnasa
13. A. Edrei, “On the generating functions of totally positive sequences. II”, J. Anal. Math., 2 (1952), 104–109  crossref  mathscinet  zmath
14. A. Edrei, “On the generating function of a doubly infinite, totally positive sequence”, Trans. Amer. Math. Soc., 74 (1953), 367–383  crossref  mathscinet  zmath
15. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp.  mathscinet  zmath
16. J. Faraut, “Rayleigh theorem, projection of orbital measures and spline functions”, Adv. Pure Appl. Math., 6:4 (2015), 261–283  crossref  mathscinet  zmath
17. I. Gessel and D. Stanton, “Strange evaluations of hypergeometric series”, SIAM J. Math. Anal., 13:2 (1982), 295–308  crossref  mathscinet  zmath
18. V. Gorin, “The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices”, Adv. Math., 229:1 (2012), 201–266  crossref  mathscinet  zmath
19. V. Gorin and G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418  crossref  mathscinet  zmath
20. V. Gorin and G. Panova, “Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory”, Ann. Probab., 43:6 (2015), 3052–3132  crossref  mathscinet  zmath
21. G. Heckman and G. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspect. Math., 16, Academic Press, Inc., San Diego, CA, 1994, xii+225 pp.  mathscinet  zmath
22. S. Kerov, A. Okounkov and G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not. IMRN, 1998:4 (1998), 173–199  crossref  mathscinet  zmath
23. C. Krattenthaler and K. Srinivasa Rao, “Automatic generation of hypergeometric identities by the beta integral method”, J. Comput. Appl. Math., 160:1–2 (2003), 159–173  crossref  mathscinet  zmath  adsnasa
24. M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312:6 (1991), 425–428  mathscinet  zmath
25. F. W. Lawvere, The category of probabilistic mappings, 1962 https://ncatlab.org/nlab/files/lawvereprobability1962.pdf
26. I. G. Macdonald, “Schur functions: theme and variations”, Séminaire Lotharingien de combinatoire, 28th session (Saint-Nabor 1992), Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Dép. Math., Inst. Rech. Math. Av., Strasbourg, 1992, 5–39  mathscinet  zmath
27. A. I. Molev, “Comultiplication rules for the double Schur functions and Cauchy identities”, Electron. J. Combin., 16:1 (2009), R13, 44 pp.  crossref  mathscinet  zmath
28. J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada, “Tableau representation for Macdonald's ninth variation of Schur functions”, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 180–195  crossref  mathscinet  zmath
29. A. Okounkov and G. Olshanskii, “Shifted Schur functions”, St. Petersburg Math. J., 9:2 (1998), 239–300  mathnet  mathscinet  zmath
30. A. Okounkov and G. Olshanski, “Shifted Schur functions. II. The binomial formula for characters of classical groups and its applications”, Kirillov's seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, 181, Adv. Math. Sci., 35, Amer. Math. Soc., Providence, RI, 1998, 245–271  crossref  mathscinet  zmath
31. A. Okounkov and G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Int. Math. Res. Not. IMRN, 1998:13 (1998), 641–682  crossref  mathscinet  zmath
32. A. Okounkov and G. Olshanski, “Limits of BC-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 281–318  crossref  mathscinet  zmath
33. G. Olshanski, “Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines”, J. Lie Theory, 23:4 (2013), 1011–1022  mathscinet  zmath
34. G. I. Ol'shanskii, “Unitary representations of the infinite-dimensional classical groups U(p,\infty), SO(p,\infty), Sp(p, \infty) and the corresponding motion groups”, Funct. Anal. Appl., 12:3 (1978), 185–195  mathnet  crossref  mathscinet  zmath
35. G. Olshanski, “The Gelfand-Tsetlin graph and Markov processes”, Proceedings of the international congress of mathematicians (Seoul 2014), v. IV, Kyung Moon Sa, Seoul, 2014, 431–453 http://www.icm2014.org/en/vod/proceedings.html  mathscinet  zmath; arXiv: 1404.3646
36. G. I. Olshanski, “Extended Gelfand-Tsetlin graph, its q-boundary, and q-B-splines”, Funct. Anal. Appl., 50:2 (2016), 107–130  mathnet  crossref  crossref  mathscinet  zmath
37. G. Olshanski, “Interpolation Macdonald polynomials and Cauchy-type identities”, J. Combin. Theory Ser. A, 162 (2019), 65–117  crossref  mathscinet  zmath
38. G. Olshanski and A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary mathematical physics, F. A. Berezin memorial volume, Amer. Math. Soc. Transl. Ser. 2, 175, Adv. Math. Sci., 31, Amer. Math. Soc., Providence, RI, 1996, 137–175  crossref  mathscinet  zmath
39. L. Petrov, “The boundary of the Gelfand-Tsetlin graph: new proof of Borodin-Olshanski's formula, and its q-analogue”, Mosc. Math. J., 14:1 (2014), 121–160  mathnet  crossref  mathscinet  zmath
40. D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26  crossref  mathscinet  zmath
41. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Sci. Publ., New York, 1990, 800 pp.  mathscinet  mathscinet  zmath  zmath
42. E. M. Rains, A letter to the author, June 13, 2013
43. E. Rassart, “A polynomiality property for Littlewood-Richardson coefficients”, J. Combin. Theory Ser. A, 107:2 (2004), 161–179  crossref  mathscinet  zmath
44. I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841  crossref  mathscinet  zmath
45. I. J. Schoenberg, “On Pólya frequency functions. I. The totally positive functions and their Laplace transforms”, J. Anal. Math., 1 (1951), 331–374  crossref  mathscinet  zmath
46. L. L. Schumaker, Spline functions: basic theory, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2007, xvi+582 pp.  crossref  mathscinet  zmath
47. A. N. Sergeev and A. P. Veselov, “Jacobi-Trudy formula for generalized Schur polynomials”, Mosc. Math. J., 14:1 (2014), 161–168  mathnet  crossref  mathscinet  zmath; arXiv: 0905.2557
48. P. Simeonov and R. Goldman, “Quantum B-splines”, BIT, 53:1 (2013), 193–223  crossref  mathscinet  zmath
49. L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966, xiii+273 pp.  mathscinet  zmath
50. G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp.  mathscinet  zmath  zmath
51. E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61  crossref  mathscinet  zmath
52. A. M. Vershik and S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Funct. Anal. Appl., 15:4 (1981), 246–255  mathnet  crossref  mathscinet  zmath
53. A. M. Vershik and S. V. Kerov, “Characters and factor representations of the infinite unitary group”, Soviet Math. Dokl., 26:3 (1982), 570–574  mathnet  mathscinet  zmath
54. D. Voiculescu, “Représentations factorielles de type II_1 de U(\infty)”, J. Math. Pures Appl. (9), 55:1 (1976), 1–20  mathscinet  zmath
55. J. A. Wilson, Hypergeometric series recurrence relations and some new orthogonal functions, Ph.D. Thesis, Univ. of Wisconsin, Madison, WI, 1978, 67 pp.  mathscinet
56. A. Zhedanov, “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101:2 (1999), 303–329  crossref  mathscinet  zmath
57. D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973, viii+448 pp.  crossref  mathscinet  mathscinet  zmath  zmath
58. D. I. Zubov, “Projections of orbital measures for classical Lie groups”, Funct. Anal. Appl., 50:3 (2016), 228–232  mathnet  crossref  crossref  mathscinet  zmath

Citation: G. I. Olshanski, “Characters of classical groups, Schur-type functions and discrete splines”, Sb. Math., 214:11 (2023), 1585–1626
Citation in format AMSBIB
\Bibitem{Ols23}
\by G.~I.~Olshanski
\paper Characters of classical groups, Schur-type functions and discrete splines
\jour Sb. Math.
\yr 2023
\vol 214
\issue 11
\pages 1585--1626
\mathnet{http://mi.mathnet.ru/eng/sm9905}
\crossref{https://doi.org/10.4213/sm9905e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4720896}
\zmath{https://zbmath.org/?q=an:1536.05467}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023SbMat.214.1585O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001191951300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85188525375}
Linking options:
  • https://www.mathnet.ru/eng/sm9905
  • https://doi.org/10.4213/sm9905e
  • https://www.mathnet.ru/eng/sm/v214/i11/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:423
    Russian version PDF:37
    English version PDF:69
    Russian version HTML:133
    English version HTML:153
    References:40
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025