Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2024, Volume 215, Issue 2, Pages 234–249
DOI: https://doi.org/10.4213/sm9891e
(Mi sm9891)
 

Basis property of the Legendre polynomials in variable exponent Lebesgue spaces

M. G. Magomed-Kasumovab, T. N. Shakh-Emirova, R. M. Gadzhimirzaeva

a Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala, Russia
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Vladikavkaz, Russia
References:
Abstract: Sharapudinov proved that the Legendre polynomials form a basis of the Lebesgue space with variable exponent $p(x)$ if $p(x) > 1$ satisfies the Dini–Lipschitz condition and is constant near the endpoints of the orthogonality interval. We prove that the system of Legendre polynomials forms a basis of these spaces without the condition that the variable exponent be constant near the endpoints.
Bibliography: 9 titles.
Keywords: Lebesgue space, variable exponent, Legendre polynomials, basis, the Dini–Lipschitz condition.
Received: 01.02.2023 and 15.07.2023
Bibliographic databases:
Document Type: Article
MSC: 42C10, 46E30
Language: English
Original paper language: Russian

§ 1. Introduction

According to Pollard, the Legendre polynomials form a basis of the Lebesgue space $L^p([-1,1])$ for $4/3<p<4$ and do not form a basis for $p\in[1,4/3)\cup(4,\infty)$ (see [1]). Newman and Rudin [2] supplemented this result by showing that the Legendre polynomials do not form a basis for $p \in \{4/3, 4\}$ either. The basis problem for the Legendre polynomials for variable exponent Lebesgue spaces was considered by Sharapudinov [3]. Let us discuss this problem in greater detail. We let $\mathscr P(-1,1)$ denote the class of variable exponents $p(x)$ satisfying the following conditions:

(A) $p(x)>1$ for all $x \in[-1,1]$, and $p(x)$ satisfies the Dini–Lipschitz condition (2.8) (see below) for $x,y\in[-1,1]$;

(B) the exponent $p=p(x)$ is constant in some neighbourhoods of the points $\pm 1$, that is, there exist numbers $l=l(p)$, $r=r(p)$, $\delta_1=\delta_1(p)$ and $\delta_2=\delta_2(p)$ such that $l,r > 1$, $0<\delta_1,\delta_2<1$, and

$$ \begin{equation} p(x)= \begin{cases} l & \text{if } x\in[-1,-1+\delta_1], \\ r & \text{if } x\in[1-\delta_1,1]. \end{cases} \end{equation} \tag{1.1} $$

The following theorem was proved in [3].

Theorem A. Let $p=p(x)\in\mathscr P(-1,1)$ and $p(\pm1)\in(4/3,4)$. Then the orthonormal system of Legendre polynomials (2.17) forms a basis of the variable exponent Lebesgue space $L^{p(\cdot)}([-1,1])$.

As noted in [3], the quantities $\delta_1$ and $\delta_2$ can be arbitrarily small. This suggests the problem of whether one can drop condition (B) of the constancy of the variable exponent near the points $\pm1$. In the present paper we give an affirmative answer in this problem. Namely, the following theorem will be proved.

Theorem 1.1. Let $p=p(x)>1$ satisfy the Dini–Lipschitz condition (2.8), and let $p(\pm1)\in(4/3,4)$. Then the orthonormal system of Legendre polynomials (2.17) forms a basis of $L^{p(\cdot)}([-1,1])$.

§ 2. Auxiliary results

2.1. Variable exponent Lebesgue spaces

Let $p(x)$ be a nonnegative measurable function defined on a measurable set $E$. By definition, the variable exponent Lebesgue space $L^{p(\cdot)}(E)$ consists of the functions $f$ such that

$$ \begin{equation} \int_{E}|f(x)|^{p(x)}\,dx<\infty. \end{equation} \tag{2.1} $$
For $E=[-1,1]$ we write for brevity $L^{p(\cdot)}= L^{p(\cdot)}[-1,1]$. We also define $p_+(E)=\operatorname*{ess\,sup}_{x\in E} p(x)$ and $p_-(E)=\operatorname*{ess\,inf}_{x\in E} p(x)$. For $1\leqslant p_-(E)\leqslant p(x)\leqslant p_+(E)<\infty$ the space $L^{p(\cdot)}(E)$ is normable (see [4]); one of the equivalent norms can be defined by
$$ \begin{equation} \|f\|_{p(\cdot)}=\|f\|_{p(\cdot)}(E)=\inf\biggl\{\lambda>0\colon \int_{E}\biggl|\frac{f(x)}\lambda\biggr|^{p(x)}\,dx\leqslant1\biggr\}. \end{equation} \tag{2.2} $$

In what follows we require some properties of these spaces.

Let $1\leqslant p(x)\leqslant q(x)\leqslant q_+(E)<\infty$, $E \subset [-1,1]$. Then $L^{q(\cdot)}(E)\subset L^{p(\cdot)}(E)$, and, for $f\in L^{q(\cdot)}(E)$ (see [5])

$$ \begin{equation} \|f\|_{p(\cdot)}\leqslant r_{p,q}\|f\|_{q(\cdot)}, \end{equation} \tag{2.3} $$
where $r_{p,q}=1/(\mu_-(E))+1/\mu'(E)$ ($\mu(x)=q(x)/p(x)$, $1/\mu(x)+1/\mu'(x)=1$).

If $p(x)>1$, $x \in E$ (the case $p_-(E)=1$ is not excluded), then a Hölder-type inequality holds for Lebesgue variable exponent spaces (see [4], inequality (8)):

$$ \begin{equation} \int_E |f(x)|\,|g(x)|\,dx \leqslant c(p) \|f\|_{p(\cdot)}(E) \|g\|_{p'(\cdot)}(E), \end{equation} \tag{2.4} $$
where $1/p(x)+1/p'(x)=1$, $c(p)\leqslant 1/p_-(E)+1/p_-'(E)$. Here and in what follows $c, c(\alpha), c(\alpha,\beta),\dots$ are positive constants (depending only on the above parameters), which can be different at different places.

For arbitrary measurable sets $A\subset B$,

$$ \begin{equation} \|f\|_{p(\cdot)}(A) \leqslant \|f\|_{p(\cdot)}(B). \end{equation} \tag{2.5} $$

We also use the equivalent norm (see [3])

$$ \begin{equation} \|f\|^*_{p(\cdot)}=\sup_{\substack{g\in L^{p'(\cdot)}(E)\\ \|g\|_{p'(\cdot)}\leqslant1}} \int_{E}f(x)g(x)\,dx. \end{equation} \tag{2.6} $$
Note that
$$ \begin{equation} \|f\|_{p(\cdot)}\leqslant\|f\|^*_{p(\cdot)}\leqslant c(p)\|f\|_{p(\cdot)}. \end{equation} \tag{2.7} $$

The Dini–Lipschitz condition

$$ \begin{equation} |p(x)-p(y)| \leqslant \frac{c}{|\log |x-y||}, \qquad x,y \in E, \end{equation} \tag{2.8} $$
plays a fundamental role in the theory of variable exponent Lebesgue spaces. For such spaces this condition was introduced by Sharapudinov [5], who studied the basis property of the Haar system in $L^{p(\cdot)}([0,1])$.

We also require the following result (see Corollary 2.23 in [6]).

Lemma 2.1. Let $A$ be a measurable set, let

$$ \begin{equation*} \rho(f)=\rho_{p(\cdot),A}(f)=\int_{A}|f(x)|^{p(x)}\,dx, \end{equation*} \notag $$
and let $1\leqslant p_-(A)\leqslant p(x)\leqslant p_+(A)<\infty$. If $\|f\|_{p(\cdot)}>1$, then
$$ \begin{equation*} \rho^{1/{p_+}}(f)\leqslant\|f\|_{p(\cdot)}(A)\leqslant\rho^{1/{p_-}}(f). \end{equation*} \notag $$

If $0<\|f\|_{p(\cdot)}\leqslant1$, then

$$ \begin{equation*} \rho^{1/{p_-}}(f)\leqslant\|f\|_{p(\cdot)}(A)\leqslant\rho^{1/{p_+}}(f). \end{equation*} \notag $$

The proof of our main theorem depends on several lemmas, which enable one to change from a variable exponent to a constant one.

Lemma 2.2. Let $p(x)$ satisfy the Dini–Lipschitz condition (2.8) on $[a,b]$, $0\leqslant a < b \leqslant 1$. Then

$$ \begin{equation*} J=\int_{a}^{b} \biggl(\frac{1}{1-x} \biggr)^{p(x)}\,dx \leqslant c(p) \int_{a}^{b} \biggl(\frac{1}{1-x} \biggr)^{p(1)}\,dx. \end{equation*} \notag $$

If $b=1$, then a lower estimate also holds:

$$ \begin{equation*} J \geqslant c(p) \int_{a}^{1} \biggl(\frac{1}{1-x} \biggr)^{p(1)}\,dx. \end{equation*} \notag $$

Proof. By the Dini–Lipschitz condition
$$ \begin{equation*} \begin{aligned} \, &\biggl(\frac{1}{1-x} \biggr)^{p(x)-p(1)} \leqslant \biggl(\frac{1}{1-x} \biggr)^{|p(x)-p(1)|} \leqslant \biggl(\frac{1}{1-x} \biggr)^{c/|\log(1-x)|} \\ &\qquad =\exp\biggl(\log \biggl(\frac{1}{1-x} \biggr)^{c/|\log(1-x)|}\biggr) =\exp\biggl(\frac{c}{|\log(1-x)|} \log\biggl(\frac{1}{1-x} \biggr)\biggr) \\ &\qquad= \exp\biggl(\frac{-c\log(1-x)}{|\log(1-x)|} \biggr)=e^{c}, \qquad x \in [0,1). \end{aligned} \end{equation*} \notag $$

Hence

$$ \begin{equation*} J=\int_{a}^{b} \biggl(\frac{1}{1-x} \biggr)^{p(1)} \biggl(\frac{1}{1-x} \biggr)^{p(x)-p(1)}\,dx \leqslant c(p)\int_{a}^{b} \biggl(\frac{1}{1-x} \biggr)^{p(1)}\,dx, \qquad a \geqslant 0. \end{equation*} \notag $$

Let us prove the lower estimate. We set $E_+=\{ x \in [a,1]\colon p(x)-p(1) \geqslant 0 \}$, $E_-=\{ x \in [a,1]\colon p(x)-p(1) < 0 \}$ and split the integral into two:

$$ \begin{equation*} \int_{a}^{1} \biggl(\frac{1}{1-x} \biggr)^{p(x)}\, dx= \int_{E_+} \biggl(\frac{1}{1-x} \biggr)^{p(x)}\, dx + \int_{E_-} \biggl(\frac{1}{1-x} \biggr)^{p(x)}\, dx. \end{equation*} \notag $$
Since $1/(1-x) \geqslant 1$, we have
$$ \begin{equation*} \int_{E_+} \biggl(\frac{1}{1-x} \biggr)^{p(x)} \,dx= \int_{E_+} \biggl(\frac{1}{1-x} \biggr)^{p(1)} \biggl(\frac{1}{1-x} \biggr)^{p(x)-p(1)}\!\! dx \geqslant \int_{E_+} \biggl(\frac{1}{1-x} \biggr)^{p(1)} \,dx. \end{equation*} \notag $$
For $x \in E_{-}$,
$$ \begin{equation*} \biggl(\frac{1}{1-x} \biggr)^{p(x)-p(1)}= (1-x)^{p(1)-p(x)} \geqslant (1-x)^{c/(-\log(1-x))}=e^{-c}. \end{equation*} \notag $$
Hence
$$ \begin{equation*} \int_{E_-} \biggl(\frac{1}{1-x} \biggr)^{p(x)} \,dx \geqslant e^{-c}\int_{E_-} \biggl(\frac{1}{1-x} \biggr)^{p(1)} \,dx, \end{equation*} \notag $$
which proves the lemma.

We say that $p(x)$ satisfies the Dini–Lipschitz condition to the left of a point $a$ if

$$ \begin{equation} |p(a)-p(x)| \leqslant \frac{c_0}{-\log(a-x)} \end{equation} \tag{2.9} $$
for all $x$ in some left neighbourhood of $a$.

Lemma 2.3. Let $p(x)$ satisfy the Dini–Lipschitz condition to the left of the point $1$. Then there exists a constant $c(p)$, which depends on $p(x)$, such that for all $y$ in some left neighbourhood of $1$ and all $x \in [y,1]$

$$ \begin{equation*} f(x,y)=\biggl(\frac{1}{1-y}\biggr)^{p(x)} \leqslant c(p)\biggl(\frac{1}{1-y}\biggr)^{p(1)}. \end{equation*} \notag $$

If $p(1)>0$, then the reverse inequality also holds:

$$ \begin{equation*} f(x,y) \geqslant c(p)\biggl(\frac{1}{1-y}\biggr)^{p(1)}. \end{equation*} \notag $$

Proof. We write $f(x,y)$ in the form
$$ \begin{equation} f(x,y)=\biggl(\frac{1}{1-y}\biggr)^{p(1)}\biggl(\frac{1}{1-y}\biggr)^{p(x)-p(1)}. \end{equation} \tag{2.10} $$
Let show that, under the conditions of the lemma, the second factor is a bounded function. Indeed, by the Dini–Lipschitz condition (2.9) and the inequality $x \geqslant y$, which follows from the conditions of the lemma, we have
$$ \begin{equation*} \biggl(\frac{1}{1-y}\biggr)^{p(x)-p(1)} \leqslant \biggl(\frac{1}{1-y}\biggr)^{c/|\log(1-x)|} \leqslant \biggl(\frac{1}{1-y}\biggr)^{c/|\log(1-y)|} \leqslant e^c. \end{equation*} \notag $$

The reverse inequality is proved similarly to Lemma 2.2. This completes the proof.

Lemma 2.4. Let $0 \leqslant f(x) \leqslant c/(1-x)^\alpha$, $x \in [a,1]$, and let $p(x)$ satisfy the Dini–Lipschitz condition on $ [a,1]$. Then

$$ \begin{equation*} f(x)^{p(x)} \leqslant c(p)^\alpha f(x)^{p(1)}, \qquad x \in [a,1]. \end{equation*} \notag $$

Proof. We have
$$ \begin{equation*} f(x)^{p(x)}=f(x)^{p(1)} f(x)^{p(x)-p(1)} \leqslant f(x)^{p(1)} \biggl(\frac{c}{(1-x)^\alpha}\biggr)^{p(x)-p(1)}. \end{equation*} \notag $$
For the second factor Lemma 2.3 shows that
$$ \begin{equation*} \biggl(\frac{c}{(1-x)^\alpha}\biggr)^{p(x)-p(1)} \leqslant \biggl[\biggl(\frac{c}{1-x}\biggr)^{p(x)-p(1)}\biggr]^\alpha \leqslant c(p)^\alpha, \end{equation*} \notag $$
which proves the lemma.

Lemma 2.5. Let $p(x)$ satisfy the Dini–Lipschitz condition. Then

$$ \begin{equation*} \biggl(\int_a^{2x-1} \frac{|f(y)|\,dy}{(1-y)^{3/4}} \biggr)^{p(x)} \leqslant c(p) \biggl(\int_a^{2x-1} \frac{|f(y)|\,dy}{(1-y)^{3/4}} \biggr)^{p(1)}, \qquad \|f\|_{p(\cdot)} \leqslant 1. \end{equation*} \notag $$

Proof. We have
$$ \begin{equation*} \begin{aligned} \, \int_a^{2x-1} \frac{|f(y)|\,dy}{(1-y)^{3/4}} &\leqslant \frac{c}{(1-x)^{3/4}} \int_a^{2x-1} |f(y)|\,dy \\ &\leqslant\frac{c(p)}{(1-x)^{3/4}} \|f\|_{p(\cdot)} \leqslant \frac{c(p)}{(1-x)^{3/4}}, \end{aligned} \end{equation*} \notag $$
and now the required assertion is secured by Lemma 2.4. This completes the proof.

We also note the following relation, which follows easily, for example, from Hölder’s inequality for sums:

$$ \begin{equation} \biggl(\sum_{k=1}^N a_k \biggr)^p \leqslant N^{p-1} \sum_{k=1}^N a_k^p, \qquad p \geqslant 1. \end{equation} \tag{2.11} $$

2.2. The kernel $K(x,y)$

Following formula (5.16) in [3], we set

$$ \begin{equation} K(x,y)=\frac{1}{|x-y|}\biggl| \biggl(\frac{1-y^2}{1-x^2} \biggr)^{1/4} - 1 \biggr|. \end{equation} \tag{2.12} $$

We need some properties of the kernel $K(x,y)$.

Lemma 2.6. If $-1 < y < 1$ and $(y+1)/2 \leqslant x < 1$, then

$$ \begin{equation} K(x,y) \leqslant \frac{2^{5/4}}{1-y} \biggl(\frac{1-y}{1-x} \biggr)^{1/4}. \end{equation} \tag{2.13} $$

Proof. It can easily be shown that, under the conditions of the lemma,
$$ \begin{equation*} K(x,y) \leqslant \frac{2}{1-y}\biggl[ \biggl(\frac{1-y^2}{1-x^2} \biggr)^{1/4} - 1 \biggr] \leqslant 2\frac{(1-y^2)^{1/4}}{(1-y)(1+x)^{1/4}} \, \frac{1}{(1-x)^{1/4}}. \end{equation*} \notag $$
It remains to note that
$$ \begin{equation*} \frac{1}{(1+x)^{1/4}} \leqslant \frac{2^{1/4}}{(y+3)^{1/4}} < 1, \end{equation*} \notag $$
since $(y+1)/2< x$. This proves the lemma.

Lemma 2.7. The following inequalities hold:

$$ \begin{equation} \frac13 \overline{K}(x,y)\leqslant K(x,y)\leqslant\overline{K}(x,y) \end{equation} \tag{2.14} $$
(see [3], formula (5.20)), where
$$ \begin{equation*} \overline{K}(x,y)=\frac{1}{(1-x^2)^{1/4}}\frac{|x+y|}{(1-y^2)^{3/4}+(1-x^2)^{3/4}}. \end{equation*} \notag $$

Lemma 2.8. Let $-1+\varepsilon < x < 1 - \varepsilon$, $0 < \varepsilon < 1$. Then the kernel $K(x,y)$ is uniformly bounded with respect to $y \in [-1,1]$:

$$ \begin{equation*} K(x,y) \leqslant \frac{1}{\varepsilon}. \end{equation*} \notag $$

Proof. The required inequality is derived from (2.14) as follows:
$$ \begin{equation*} K(x,y)\leqslant\overline{K}(x,y)\leqslant\frac{|x+y|}{(1-x^2)} \leqslant\frac{2-\varepsilon}{1-(1-\varepsilon)^2}=\frac1\varepsilon. \end{equation*} \notag $$
This proves the lemma.

2.3. Legendre polynomials

Legendre polynomials, which can be defined by Rodrigues’s formula

$$ \begin{equation*} P_n(x)=\frac{(-1)^n}{2^nn!}\{(1-x^2)^n\}^{(n)}, \end{equation*} \notag $$
are orthogonal with weight 1 on $[-1,1]$, that is,
$$ \begin{equation*} \int_{-1}^1P_n(x)P_m(x)\,dx=\frac{2}{2n+1}\delta_{nm}, \end{equation*} \notag $$
where $\delta_{nm}$ is the Kronecker delta.

Recall the following properties of Legendre polynomials (see [7], Theorems (7.3.3) and (7.33.3)):

$$ \begin{equation} (1-x^2)^{1/4}n^{1/2}|P_n(x)|\leqslant\sqrt{\frac2\pi}, \end{equation} \tag{2.15} $$
$$ \begin{equation} (1-x^2)^{1/4}(n+1)^{1/2}|P_n(x)-P_{n+2}(x)|\leqslant c,\ x\in[-1,1]. \end{equation} \tag{2.16} $$
Orthonormal Legendre polynomials are as follows:
$$ \begin{equation} \widehat{P}_n(x)=\sqrt{\frac{2n+1}{2}}P_n(x). \end{equation} \tag{2.17} $$

With an integrable function $f(x)$ on $[-1,1]$ we can associate the Fourier–Legendre series

$$ \begin{equation} f\sim\sum_{k=0}^\infty f_kP_k(x), \end{equation} \tag{2.18} $$
where
$$ \begin{equation*} f_k=\frac{2k+1}{2}\int_{-1}^1f(t)P_k(t)\,dt \end{equation*} \notag $$
are the Fourier–Legendre coefficients of $f$. Partial sums of the series (2.18) are as follows:
$$ \begin{equation*} S_n(f,x)=\sum_{k=0}^n f_kP_k(x). \end{equation*} \notag $$

Below we need the integral representation

$$ \begin{equation} S_n(f,x)=\int_{-1}^{1}f(t)K_n(x,t)\,dt \end{equation} \tag{2.19} $$
for Fourier–Legendre partial sums in terms of the Christoffel–Darboux kernels
$$ \begin{equation*} K_n(x,t)=\sum_{k=0}^n\frac{2k+1}{2}P_k(x)P_k(t) =\frac{n+1}2\frac{P_{n+1}(x)P_n(t)-P_{n+1}(t)P_n(x)}{x-t}. \end{equation*} \notag $$

2.4. The Hilbert transform

Let $\mathbb{P}(-1,1)$ be the class of exponents $p(x)>1$ satisfying condition (2.8) on $[-1,1]$. Let $p(x)\in\mathbb{P}(-1,1)$. For $f\in L^{p(\cdot)}$ the Hilbert transform is defined by

$$ \begin{equation} Hf=Hf(x)=\int_{-1}^{1}\frac{f(t)}{t-x}\,dt. \end{equation} \tag{2.20} $$
The integral on the right-hand side of (2.20) is understood in the sense of the Cauchy principal value. Note that the function $Hf(x)$ is finite for nearly all $x\in[-1,1]$. In [8] and [9] it was shown that
$$ \begin{equation} \|Hf\|_{p(\cdot)}\leqslant c(p)\|f\|_{p(\cdot)}. \end{equation} \tag{2.21} $$

§ 3. Proof of Theorem 1.1

Consider the operators

$$ \begin{equation} T_1(f)(x)=\int_{-1}^1 K(x,y)|f(y)|\,dy\quad\text{and} \quad T_2(f)(x)=\int_{-1}^1 K(y,x)|f(y)|\,dy. \end{equation} \tag{3.1} $$
According to [3], the boundedness of these operators in $L^{p(\cdot)}$ plays an important role in the proof of the uniform boundedness of the Fourier–Legendre partial sums in $L^{p(\cdot)}$. Lemma 5.2 in [3] shows that these operators are bounded if $p(x)\in\mathscr P(-1,1)$. In the present paper we show that these operators are also bounded without constraint (B) that the exponent $p(x)$ should be constant near the endpoints of the intervals.

Lemma 3.1 (main lemma). Let $p=p(x)$ satisfy the Dini–Lipschitz condition (2.8), and let $p(\pm1)\in(4/3,4)$. Then the operators $T_1(f)$ and $T_2(f)$ are bounded in the space $L^{p(\cdot)}$.

The proof of this lemma, which underlies the following result, is presented in § 4.

Lemma 3.2. Let $p=p(x)$ satisfy the Dini–Lipschitz condition (2.8), and let $p(\pm1)\in(4/3,4)$. Then for $f \in L^{p(\cdot)}$

$$ \begin{equation*} \|S_{n}(f)\|_{p(\cdot)} < c(p), \qquad \|f\|_{p(\cdot)} \leqslant 1. \end{equation*} \notag $$

The proof of Lemma 3.2 follows mainly the proof of the uniform boundedness of the $S_n$ (see [3], the proof of Theorem 5), except for the fact that here we use Lemma 3.1 in place of Lemma 5.2 in [3], and we also apply Lemma 2.2. However, we present the proof for completeness.

Proof of Lemma 3.2. From (2.19) and Lemma 5.1 in [3] we obtain
$$ \begin{equation*} \begin{aligned} \, S_n(f,x) &=\frac{n+2}{2n+3}\,\frac{n+1}2P_{n+1}(x)\int_{-1}^{1} \frac{P_n(y)-P_{n+2}(y)}{x-y}f(y)\,dy \\ &\qquad +\frac{n+2}{2n+3}\,\frac{n+1}2[P_{n+2}(x)-P_n(x)] \int_{-1}^{1}\frac{P_{n+1}(y)}{x-y}f(y)\,dy \\ &\qquad +\frac{n+1}2P_{n+1}(x)\int_{-1}^{1}P_{n+1}(y)f(y)\,dy. \end{aligned} \end{equation*} \notag $$

The first two integrals on the right-hand side are understood in the sense of the Cauchy principal value. By the weighted estimate (2.15) and inequality (2.16) we have

$$ \begin{equation} \begin{aligned} \, \notag |S_n(f,x)| &\leqslant c(n+1)^{1/2}(1-x^2)^{-1/4}\biggl|\int_{-1}^{1}\frac{P_n(y)-P_{n+2}(y)}{x-y}f(y)\,dy\biggr| \\ \notag &\qquad +c(n+1)^{1/2}(1-x^2)^{1/4}\biggl|\int_{-1}^{1}\frac{P_{n+1}(y)}{x-y}f(y)\,dy\biggr| \\ \notag &\qquad+c(n+1)^{1/2}(1-x^2)^{-1/4}\biggl|\int_{-1}^{1}P_{n+1}(y)f(y)\,dy\biggr| \\ &=Q_1(x)+Q_2(x)+Q_3(x). \end{aligned} \end{equation} \tag{3.2} $$

For $Q_3$, applying the weighted estimate (2.15) and Hölder’s inequality (2.4) we find that

$$ \begin{equation*} Q_3(x)\leqslant c(p)(1-x^2)^{-1/4}\|(1-y^2)^{-1/4}\|_{p'(\cdot)}(-1,1). \end{equation*} \notag $$
The integral $\displaystyle\int_{-1}^{1}(1-y^2)^{-p'(y)/4}\,dy$, and so also the norm $\|(1- y^2)^{-1/4}\|_{p'(\cdot)}(-1,1)$, are finite by Lemma 2.2. Hence $Q_3(x)\leqslant c(p)(1-x^2)^{-1/4}$ and
$$ \begin{equation} \int_{-1}^{1}Q_3(x)^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{3.3} $$

Next, for $Q_1$ we have

$$ \begin{equation} \begin{aligned} \, \notag Q_1(x) &=\biggl|\int_{-1}^{1}\biggl(\frac{1-y^2}{1-x^2}\biggr)^{1/4}\frac{A_n(y)}{x-y}f(y)\,dy\biggr| \\ \notag &\leqslant\biggl|\int_{-1}^{1}\biggl[\biggl(\frac{1-y^2}{1-x^2}\biggr)^{1/4}-1\biggr] \frac{A_n(y)f(y)}{x-y}\,dy\biggr|+ \biggl|\int_{-1}^{1}\frac{A_n(y)f(y)}{x-y}\,dy\biggr| \\ &=Q_{11}(x)+Q_{12}(x), \end{aligned} \end{equation} \tag{3.4} $$
where
$$ \begin{equation*} A_n(y)=(n+1)^{1/2}(1-y^2)^{-1/4}[P_n(y)-P_{n+2}(y)]. \end{equation*} \notag $$
In view of (2.16) the sequence $A_n$ is uniformly bounded on $(-1,1)$. Hence the function $A_n(x)f(x)$ lies in $L^{p(\cdot)}$. Now, from (2.21) we obtain
$$ \begin{equation} \|Q_{12}\|_{p(\cdot)}(-1,1)\leqslant c(p)\|A_nf\|_{p(\cdot)}(-1,1)\leqslant c(p)\|f\|_{p(\cdot)}(-1,1)\leqslant c(p). \end{equation} \tag{3.5} $$
Let us estimate $Q_{11}$. By (2.12) and (3.1)
$$ \begin{equation*} Q_{11}(x)\leqslant \int_{-1}^{1}|A_n(y)K(x,y)f(y)|\,dy\leqslant c \int_{-1}^{1}K(x,y)|f(y)|\,dy=c T_1(f)(x). \end{equation*} \notag $$
Hence, using Lemma 3.1,
$$ \begin{equation} \int_{-1}^{1}Q_{11}(x)^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{3.6} $$
Now, from (3.4)(3.6) we obtain
$$ \begin{equation} \int_{-1}^{1}Q_{1}(x)^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{3.7} $$

The quantity $Q_{2}$ is estimated similarly to $Q_{1}$, the only difference is that in place of estimate (2.16) and the boundedness of the operator $T_1$ one should use (2.15) and the boundedness of $T_2$. So we have

$$ \begin{equation} \int_{-1}^{1}Q_{2}(x)^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{3.8} $$

Using estimates (3.3), (3.7), (3.8) and inequality (3.2) we find that

$$ \begin{equation*} \int_{-1}^{1}|S_{n}(f,x)|^{p(x)}\,dx\leqslant c(p), \end{equation*} \notag $$
which is the result required. This proves Lemma 3.2.

For the proof of Theorem 1.1 it suffices to note that the set of algebraic polynomials is dense in $L^{p(\cdot)}$ and $S_n(p_k,x)=p_k(x)$ for $k\leqslant n$, where $p_k(x)$ is an algebraic polynomial of degree $k$. Hence by Lemma 3.2

$$ \begin{equation*} \|S_{n}(f)-f\|_{p(\cdot)}\leqslant \|p_n-f\|_{p(\cdot)}+\|S_{n}(f-p_n)\|_{p(\cdot)}<(c(p)+1)\varepsilon. \end{equation*} \notag $$

§ 4. Proof of Lemma 3.1

Let $f\in L^{p(\cdot)}$, and let

$$ \begin{equation} \|f\|_{p(\cdot)} \leqslant 1. \end{equation} \tag{4.1} $$

We set $\delta=(1/2)\min\{ 4 - p(1), p(1)-4/3 \}$. Since $p'(x)$ is uniformly continuous on $[-1,1]$, there is a natural number $N_0$ such that for $N \geqslant N_0$, for each $k \in \mathcal{I}=\{-N+1, \dots, N\}$ we have

$$ \begin{equation} p'_+(\Delta_k) - p'_-(\Delta_k) < \frac{\delta}{4-\delta}, \qquad \Delta_k=\Delta_k^{(N)}= \biggl[\frac{k-1}{N},\frac{k}{N}\biggr]. \end{equation} \tag{4.2} $$

Let $N=\max\{N_1, N_2\}$. We choose $\varepsilon < 1/(2N)$ so that

$$ \begin{equation} \frac 43+\delta < p_-(\mathcal{E}) \leqslant p_+(\mathcal{E}) \leqslant 4 - \delta, \qquad \mathcal{E}=[1-\varepsilon,1]. \end{equation} \tag{4.3} $$
This is possible by the continuity of $p(x)$ at $x=1$ and since $p(\pm 1) \in (4/3, 4)$.

To prove our main lemma, Lemma 3.1, we need several auxiliary assertions.

Lemma 4.1. Let $p(x)$ satisfy the Dini–Lipschitz condition (2.8), and let $4/3<p(1)<4$. Then for $\|f\|_{p(\cdot)}\leqslant1$

$$ \begin{equation} J(f)\,{=}\,J(f,p(x))\,{=}\int_\mathcal{E}\biggl[\frac1{(1\,{-}\,x)^{1/4}} \int_{1-1/N}^{2x-1}\frac{|f(y)|\,dy}{(1\,{-}\,y)^{3/4}}\biggr]^{p(x)}\,dx\,{\leqslant}\, c(p)J(f,p(1))\,{\leqslant}\, c(p). \end{equation} \tag{4.4} $$

Proof. The relation $J(f,p(x))\leqslant c(p)J(f,p(1))$ readily follows from Lemmas 2.3 and 2.5. Let us prove the last inequality in (4.4).

We write $f(x)$ as the sum of two functions, $f(x)\chi_{E_1}(x)$ and $f(x)\chi_{E_2}(x)$, where $E_1=\{x\colon |f(x)| < 1\}$ and $E_2=\{x\colon |f(x)| \geqslant 1\}$. It is clear that $J(f) \leqslant c(p)\bigl(J(f\chi_{E_1})+J(f\chi_{E_2})\bigr)$. It is also easily verified (for example, using Lemma 2.2) that $J(f\chi_{E_1}) \leqslant c(p)$. So, in what follows we can assume that the function $|f(x)|$ is either equal to $0$, or $\geqslant1$ everywhere on $[1- 1/N,1]$.

There are two cases to consider.

1. The case $p(x)\geqslant p(1)$. Let $1/p'(1)<\beta<3/4$. To estimate $J(f,p(1))$ we apply Hölder’s inequality to the inner integral. As a result,

$$ \begin{equation*} \begin{aligned} \, J(f,p(1)) &=\int_\mathcal{E}\biggl[\frac1{(1-x)^{1/4}} \int_{1-1/N}^{2x-1}\frac{|f(y)|\,dy}{(1-y)^{3/4-\beta}(1-y)^{\beta}}\biggr]^{p(1)}\,dx \\ &\leqslant \int_\mathcal{E}\biggl[\frac1{(1-x)^{1/4}} \biggl(\int_{1-1/N}^{2x-1}\frac{|f(y)|^{p(1)}\,dy}{(1-y)^{(3/4-\beta)p(1)}} \biggr)^{1/p(1)} \\ &\qquad\times \biggl(\int_{1-1/N}^{2x-1}\frac{dy}{(1-y)^{\beta p'(1)}}\biggr)^{1/p'(1)} \biggr]^{p(1)}dx. \end{aligned} \end{equation*} \notag $$
We have
$$ \begin{equation*} \biggl(\int_{1-1/N}^{2x-1}\frac{dy}{(1-y)^{\beta p'(1)}}\biggr)^{1/p'(1)}\leqslant c(p)(1-x)^{1-1/p-\beta}, \end{equation*} \notag $$
and therefore
$$ \begin{equation*} J(f,p(1))\leqslant c(p)\int_\mathcal{E}\frac1{(1-x)^{1-(3/4-\beta)p(1)}} \int_{1-1/N}^{2x-1}\frac{|f(y)|^{p(1)}\,dy}{(1-y)^{(3/4-\beta)p(1)}}\,dx. \end{equation*} \notag $$
Hence, changing the order of integration and using (2.3), this gives
$$ \begin{equation} \begin{aligned} \, \notag J(f,p(1)) &\leqslant c(p)\int_{1-1/N}^{1}|f(y)|^{p(1)}\frac1{(1-y)^{(3/4-\beta)p(1)}} \int_{(y+1)/2}^{1}\frac{dx}{(1\,{-}\,x)^{1-(3/4-\beta)p(1)}}\,dy \\ &=c(p)\int_{1-1/N}^{1}|f(y)|^{p(1)}\,dy=c(p)\|f\|_{p(1)}^{p(1)}\leqslant c(p)\|f\|_{p(\cdot)}^{p(1)}\leqslant c(p). \end{aligned} \end{equation} \tag{4.5} $$

2. The case $p(x)\leqslant p(1)$. We write $f\in L^{p(\cdot)}$ in the form

$$ \begin{equation} f(x)=g(x)\biggl(\frac1{1-x}\biggr)^\alpha, \qquad g(x)=(1-x)^\alpha f(x), \qquad \alpha=\frac6{p'(1)}. \end{equation} \tag{4.6} $$
From the Dini–Lipschitz condition (2.8) we obtain
$$ \begin{equation} |f(x)|^{p(1)}=|f(x)|^{p(x)}|f(x)|^{p(1)-p(x)}\leqslant c(p)|f(x)|^{p(x)}|g(x)|^{p(1)-p(x)}. \end{equation} \tag{4.7} $$

Next, consider the sets $E_1=\{x\in[1-1/N,1]\colon g(x)\geqslant1\}$ and $E_2=\{x\in[1-1/N,1]\colon g(x)<1\}$. We have

$$ \begin{equation} f(x)=f(x)\chi_{E_1}(x)+f(x)\chi_{E_2}(x)=f_1(x)+f_2(x). \end{equation} \tag{4.8} $$

Arguing as in (4.5) we see that

$$ \begin{equation*} J(f_2,p(1))\leqslant c(p)\int_{1-1/N}^{1}|f_2(y)|^{p(1)}\,dy. \end{equation*} \notag $$
Hence by (4.7)
$$ \begin{equation} J(f_2,p(1))\leqslant c(p)\int_{1-1/N}^{1}|f_2(y)|^{p(1)}\,dy\leqslant \int_{1-1/N}^{1}|f_2(y)|^{p(y)}\,dy\leqslant c(p). \end{equation} \tag{4.9} $$

Let us estimate $J(f_1,p(1))$. Note that for $x\in E_1$, from (4.7) we obtain

$$ \begin{equation*} |f(x)|^{p(1)}\leqslant c(p)|f(x)|^{p(x)}|g(x)|^{p(1)-p(x)+\gamma}, \qquad \gamma=\frac{p(1)}{6}, \end{equation*} \notag $$
or, what is the same,
$$ \begin{equation*} |f(x)|\leqslant c(p)|f(x)|^{p(x)/p(1)}|g(x)|^{(p(1)-p(x)+\gamma)/p(1)}. \end{equation*} \notag $$
Using this relation and applying the Hölder-type inequality to $J(f_1)$, this gives
$$ \begin{equation} \begin{aligned} \, \notag J(f_1,p(1))&\leqslant c(p)\int_\mathcal{E}\frac{1}{(1-x)^{p(1)/4}} \int_{1-1/N}^{2x-1}\frac{|f_1(y)|^{p(y)}\,dy}{(1-y)^{(3/4-1/p'(1))p(1)}} \\ &\qquad\times \biggl(\int_{1-1/N}^{2x-1}\frac{|g(y)|^{r(y)}}{1-y}\,dy\biggr)^{p(1)/p'(1)}\,dx, \end{aligned} \end{equation} \tag{4.10} $$
where $r(y)=(p(1)-p(y)+\gamma)(p'(1)-1)$. Since $r(y)\leqslant p(y)$, we have
$$ \begin{equation} I(x)=\int_{1-1/N}^{2x-1}\frac{|g(y)|^{r(y)}}{1-y}\,dy \leqslant \int_{1-1/N}^{2x-1}\frac{|f(y)|^{p(y)}\,dy}{(1-y)^{1-\alpha r(y)}}. \end{equation} \tag{4.11} $$
For $\alpha$ and $\gamma$ as above we have
$$ \begin{equation*} 1-\alpha r(y)=1-\alpha (p(1)-p(y)+\gamma)(p'(1)-1)\leqslant0, \end{equation*} \notag $$
and so $I(x)\leqslant c(p)$ by (4.11). Hence, using (4.10) and changing the order of integration we obtain the estimate
$$ \begin{equation} \begin{aligned} \, \notag J(f_1,p(1)) &\leqslant c(p)\int_{1-1/N}^1\frac{|f_1(y)|^{p(y)}}{(1-y)^{(3/4-1/p'(1))p(1)}} \int_{(y+1)/2}^{1}\frac{dx}{(1-x)^{p(1)/4}}\,dy \\ &=c(p)\int_{1-1/N}^1\frac{|f_1(y)|^{p(y)}}{(1-y)^{(3/4-1/p'(1))p(1)+p(1)/4-1}}\,dy \notag \\ &=c(p)\int_{1-1/N}^1 |f_1(y)|^{p(y)}\,dy \leqslant c(p). \end{aligned} \end{equation} \tag{4.12} $$
From (4.8), (4.9) and (4.12), for $p(x) \leqslant p(1)$ we finally obtain
$$ \begin{equation} J(f,p(1))\leqslant c(p). \end{equation} \tag{4.13} $$

Proceeding with the general case, we set $E_+=\{x\in[1-1/N,1]\colon p(x)\geqslant p(1)\}$ and $E_-=[1-1/N,1]\setminus E_+$. Now by (4.5) and (4.13) we have

$$ \begin{equation} J(f,p(1))\leqslant c(p)(J(f\chi_{E_+},p(1))+J(f\chi_{E_-},p(1)))\leqslant c(p), \end{equation} \tag{4.14} $$
which proves Lemma 4.1.

Lemma 4.2. There exists a constant $c(p)$ such that for each $f$, $\|f\|_{L^{p(\cdot)}} \leqslant 1$,

$$ \begin{equation*} J=\int_{E}\biggl(\int_{x-(1-x)}^{x+(1-x)}K(x,y)|f(y)|\,dy\biggr)^{p(x)}\,dx \leqslant c(p). \end{equation*} \notag $$

Proof. Using (2.14), for the inner integral we have
$$ \begin{equation*} \begin{aligned} \, &\int_{x-(1-x)}^{x+(1-x)}K(x,y)|f(y)|\,dy \leqslant c(p)\frac{1}{(1-x)^{1/4}} \int_{x-(1-x)}^{x+(1-x)}\frac{|f(y)|}{(1-x)^{3/4}}\,dy \\ &\qquad\leqslant c(p)\frac{1}{2(1-x)} \int_{x-(1-x)}^{x+(1-x)}|f(y)|\,dy \leqslant c(p) Mf(x). \end{aligned} \end{equation*} \notag $$
Hence, by Corollary 2.23 in [6] and since the Hardy–Littlewood maximal function is bounded in $L^{p(\cdot)}$ (see Theorem 3.16 in [6]), we have
$$ \begin{equation*} J \leqslant c(p) \int_{E} (Mf(x))^{p(x)}\,dx \leqslant c(p) \|f\|_{L^{p(\cdot)}} \leqslant c(p), \end{equation*} \notag $$
which proves the lemma.

We continue the proof of the main lemma. First consider the operator $T_1$. We split the integral into three as follows:

$$ \begin{equation} \begin{aligned} \, \notag &\int_{-1}^1 T_1(f)(x)^{p(x)}\,dx \\ &\qquad=\biggl(\int_{-1}^{-1+\varepsilon}+\int_{-1+\varepsilon}^{1-\varepsilon}+ \int_{1-\varepsilon}^{1}\biggr)T_1(f)(x)^{p(x)}\,dx=J_1+J_2+J_3, \end{aligned} \end{equation} \tag{4.15} $$
where $\varepsilon$, which depends only on $p$, was fixed before (4.3).

By Lemma 2.8 for $J_2$ we have

$$ \begin{equation*} J_2\leqslant\int_{-1+\varepsilon}^{1-\varepsilon}\biggl(\frac c\varepsilon\int_{-1}^{1} |f(y)|dy\biggr)^{p(x)}\,dx\leqslant c(p)\int_{-1+\varepsilon}^{1-\varepsilon}\biggl(\int_{-1}^{1} |f(y)|dy\biggr)^{p(x)}\,dx. \end{equation*} \notag $$
Applying Hölder’s inequality to the inner integral and using (4.1) we obtain
$$ \begin{equation} J_2\leqslant c(p)\int_{-1+\varepsilon}^{1-\varepsilon}\|1\|_{p'(\cdot)}^{p(x)}\|f\|_{p(\cdot)}^{p(x)}\,dx\leqslant c(p)\int_{-1+\varepsilon}^{1-\varepsilon}\|1\|_{p'(\cdot)}^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{4.16} $$

Now we estimate $J_3$. According to (3.1),

$$ \begin{equation*} J_3=\int_{\mathcal{E}} \biggl(\int_{-1}^1 K(x,y)|f(y)|\,dy \biggr)^{p(x)}\,dx. \end{equation*} \notag $$

Setting $\displaystyle I_k(x)=\int_{\Delta_k} K(x,y)|f(y)|\,dy$, splitting the inner integral in $J_3$ into the parts corresponding to the intervals $\Delta_k$ in (4.2) (where $N$ was defined before (4.3)) and using (2.11) we have

$$ \begin{equation} J_{3}=\int_{\mathcal{E}} \biggl(\sum_{k=-N+1}^{N} I_k(x) \biggr)^{p(x)}\,dx \leqslant c(p) \sum_{k=-N+1}^{N} \int_{\mathcal{E}} I_k(x)^{p(x)}\,dx. \end{equation} \tag{4.17} $$
Using the Hölder-type inequality (2.4) and (4.1), for $I_k(x)$ we have
$$ \begin{equation} I_k(x) \leqslant c(p)\|K(x,\cdot)\|_{L^{p'(x)}(\Delta_k)}. \end{equation} \tag{4.18} $$
By Lemma 2.1
$$ \begin{equation} \|K(x,\cdot)\|_{L^{p'(x)}(\Delta_k)} \leqslant \max \biggl\{1, \biggl(\int_{\Delta_k} K(x,y)^{p'(y)}\,dy \biggr)^{1/p'_-(\Delta_k)} \biggr\}. \end{equation} \tag{4.19} $$
To estimate the integral on the right-hand side of the above expression for ${k \!\in\! \mathcal{I} \!\setminus\! \{\mkern-1mu N\mkern-1mu\}}$ and $x \in \mathcal{E}$, we use (2.13). We have
$$ \begin{equation*} \begin{aligned} \, &\int_{\Delta_k} K(x,y)^{p'(y)}\,dy\leqslant 2^{5p'_+(\Delta_k)/4} \biggl(\frac{1}{1-x}\biggr)^{p'_+(\Delta_k)/4} \int_{\Delta_k} \biggl(\frac{1}{1-y}\biggr)^{3p'_+(\Delta_k)/4} \,dy \\ &\qquad\leqslant2^{5p'_+(\Delta_k)/4} \biggl(\frac{1}{1-x}\biggr)^{p'_+(\Delta_k)/4} N^{3p'_+(\Delta_k)/4-1}= c(p)\biggl(\frac{1}{1-x}\biggr)^{p'_+(\Delta_k)/4}. \end{aligned} \end{equation*} \notag $$
Hence by (4.18) and (4.19),
$$ \begin{equation*} I_k(x) \leqslant c(p) \biggl(\frac{1}{1-x}\biggr)^{(p'_+(\Delta_k))/(4p'_-(\Delta_k))}, \qquad k \in \mathcal{I} \setminus \{ N \}. \end{equation*} \notag $$
Substituting this estimate into (4.17), we find that
$$ \begin{equation} J_3 \leqslant c(p)\biggl(\sum_{k \in \mathcal{I} \setminus \{N\}} \int_\mathcal{E} \biggl(\frac{1}{1-x}\biggr)^{p_+(\mathcal{E}) (p'_+(\Delta_k))/(4p'_-(\Delta_k))}\,dx+ \int_\mathcal{E} I_N(x)^{p(x)}\,dx \biggr). \end{equation} \tag{4.20} $$
Note that in view of (4.2), (4.3) and the condition $p(x)>1$, for all $k \in \mathcal{I}$ we have
$$ \begin{equation*} \frac14 p_+(\mathcal{E})\frac{p'_+(\Delta_k)}{p'_-(\Delta_k)} < \frac14 (4-\delta) \frac{p'_-(\Delta_k)+\delta/(4-\delta)}{p'_-(\Delta_k)} < 1. \end{equation*} \notag $$
Therefore, by (4.20)
$$ \begin{equation} J_3 \leqslant c(p)\biggl(1+\int_\mathcal{E} I_N(x)^{p(x)}\,dx \biggr). \end{equation} \tag{4.21} $$

To estimate the integral in (4.21) we write $I_N(x)$ as the sum

$$ \begin{equation*} I_N(x)=\biggl(\int_{1-1/N}^{x-(1-x)}+\int_{x-(1-x)}^1 \biggr) K(x,y)|f(y)|\,dy= I_N^{(1)}(x)+I_N^{(2)}(x). \end{equation*} \notag $$
In view of (2.11) the integral is estimated as follows:
$$ \begin{equation} \int_\mathcal{E} I_N(x)^{p(x)}\,dx \leqslant c(p)\biggl(\int_\mathcal{E} I_N^{(1)}(x)^{p(x)}\,dx+\int_\mathcal{E} I_N^{(2)}(x)^{p(x)}\,dx\biggr). \end{equation} \tag{4.22} $$
From Lemma 4.2 we readily obtain
$$ \begin{equation} \int_\mathcal{E} I_N^{(2)}(x)^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{4.23} $$
Consider now the quantity $I_N^{(1)}(x)$. By (2.14),
$$ \begin{equation*} I_N^{(1)}(x) \leqslant \int_{1-1/N}^{x-(1-x)} \overline{K}(x,y)|f(y)|\,dy\leqslant \frac{c}{(1-x)^{1/4}}\int_{1-1/N}^{2x-1}\frac{f(y)\,dy}{(1-y)^{3/4}}, \qquad x\in \mathcal{E}, \end{equation*} \notag $$
and so, by Lemma 4.1,
$$ \begin{equation} \int_\mathcal{E} I_N^{(1)}(x)^{p(x)}\,dx\leqslant c(p)\int_\mathcal{E}\biggl[\frac1{(1-x)^{1/4}} \int_{1-1/N}^{2x-1}\frac{f(y)\,dy}{(1-y)^{3/4}}\biggr]^{p(x)}\,dx\leqslant c(p). \end{equation} \tag{4.24} $$
Now from (4.21) and (4.22)(4.24) we eventually obtain
$$ \begin{equation} J_3\leqslant c(p). \end{equation} \tag{4.25} $$

To evaluate $J_1$, we change in succession to $x=-t$ and $y=-u$ and use the obvious fact that $K(-x,-y)=K(x,y)$. As a result,

$$ \begin{equation*} \begin{aligned} \, J_1&=\int_{-1}^{-1+\varepsilon}\biggl(\int_{-1}^{1}K(x,y)|f(y)|\,dy\biggr)^{p(x)}\,dx \\ &=\int_{1-\varepsilon}^{1}\biggl(\int_{-1}^{1}K(t,u)|f(-u)|\,du\biggr)^{p(-t)}\,dt= \int_{1-\varepsilon}^{1}\biggl(\int_{-1}^{1}K(t,u)|g(u)|\,du\biggr)^{q(t)}\,dt. \end{aligned} \end{equation*} \notag $$
Next, we note that $g\in L^{q(\cdot)}$ and
$$ \begin{equation*} \|f\|_{p(\cdot)}=\|g\|_{q(\cdot)}. \end{equation*} \notag $$
Indeed, by the definition of the norm (2.2) we have
$$ \begin{equation*} \begin{aligned} \, \|f\|_{p(\cdot)} =\inf\biggl\{\lambda>0\colon \int_{-1}^{1}\biggl|\frac{f(x)}\lambda\biggr|^{p(x)}\,dx &=\int_{-1}^{1}\biggl|\frac{f(-x)}\lambda\biggr|^{p(-x)}\,dx \\ &=\int_{-1}^{1}\biggl|\frac{g(x)}\lambda\biggr|^{q(x)}\,dx\leqslant1\biggr\}=\|g\|_{q(\cdot)}. \end{aligned} \end{equation*} \notag $$
Thus, $J_1$ for $f\in L^{p(\cdot)}$ coincides with $J_3$ for the function $g\in L^{q(\cdot)}$, which is bounded by the above, since the exponent $q(x)$ satisfies the condition in the lemma, and $\|g\|_{q(\cdot)}\leqslant1$. Therefore,
$$ \begin{equation} J_1\leqslant c(p). \end{equation} \tag{4.26} $$
From (4.16), (4.25) and (4.26) we finally obtain
$$ \begin{equation} \int_{-1}^{1}T_1(f)(x)^{p(x)}\,dx<c(p). \end{equation} \tag{4.27} $$

Let us now examine the boundedness of the operator $T_2$ in $L^{p(\cdot)}$. We follow the arguments in [3]. Using the norm (2.6) we have

$$ \begin{equation*} \begin{aligned} \, \|T_2(f)\|^*_{p(\cdot)} &=\sup_{\substack{\|g\|_{p'(\cdot)}\leqslant1 \\ g(x)\geqslant0}}\int_{-1}^{1}g(x)\,dx \int_{-1}^{1}K(y,x)|f(y)|\,dy \\ &=\sup_{\substack{\|g\|_{p'(\cdot)}\leqslant1 \\ g(x)\geqslant0}}\int_{-1}^{1}|f(y)|\,dy \int_{-1}^{1}K(y,x)g(x)\,dx \\ &=\sup_{\substack{\|g\|_{p'(\cdot)}\leqslant1 \\ g(x)\geqslant0}}\int_{-1}^{1}|f(y)|T_1(g)(y)\,dy. \end{aligned} \end{equation*} \notag $$
Since both $p'(x)$ and $p(x)$ satisfy the conditions of the lemma, by the above we have
$$ \begin{equation*} \int_{-1}^{1}T_1(g)(x)^{p'(x)}\,dx < c(p'). \end{equation*} \notag $$
Therefore, we also have $\|T_1(g)\|_{p'(\cdot)} < c(p')$. Hence, using (2.7), (2.4) and (4.1) we finally obtain
$$ \begin{equation*} \|T_2(f)\|_{p(\cdot)} \leqslant \sup_{\substack{\|g\|_{p'(\cdot)}\leqslant1 \\ g(x)\geqslant0}} c(p)\|f\|_{p(\cdot)}\|T_1(g)\|_{p'(\cdot)} \leqslant c(p)c(p')\|f\|_{p(\cdot)} < c(p). \end{equation*} \notag $$
This proves Lemma 3.1.


Bibliography

1. H. Pollard, “The mean convergence of orthogonal series. I”, Trans. Amer. Math. Soc., 62:3 (1947), 387–403  crossref  mathscinet  zmath
2. J. Newman and W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3:2 (1952), 219–222  crossref  mathscinet  zmath
3. I. I. Sharapudinov, “The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$”, Sb. Math., 200:1 (2009), 133–156  mathnet  crossref  mathscinet  zmath  adsnasa
4. I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806  mathnet  crossref  mathscinet  zmath
5. I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287  mathnet  crossref  mathscinet  zmath  adsnasa
6. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013, x+312 pp.  crossref  mathscinet  zmath
7. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp.  mathscinet  zmath
8. L. Diening and M. Růžička, “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 2003:563 (2003), 197–220  crossref  mathscinet  zmath
9. V. Kokilashvili and S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156  crossref  mathscinet  zmath

Citation: M. G. Magomed-Kasumov, T. N. Shakh-Emirov, R. M. Gadzhimirzaev, “Basis property of the Legendre polynomials in variable exponent Lebesgue spaces”, Sb. Math., 215:2 (2024), 234–249
Citation in format AMSBIB
\Bibitem{MagShaGad24}
\by M.~G.~Magomed-Kasumov, T.~N.~Shakh-Emirov, R.~M.~Gadzhimirzaev
\paper Basis property of the Legendre polynomials in variable exponent Lebesgue spaces
\jour Sb. Math.
\yr 2024
\vol 215
\issue 2
\pages 234--249
\mathnet{http://mi.mathnet.ru//eng/sm9891}
\crossref{https://doi.org/10.4213/sm9891e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767938}
\zmath{https://zbmath.org/?q=an:1543.42037}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024SbMat.215..234M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001251011100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197405038}
Linking options:
  • https://www.mathnet.ru/eng/sm9891
  • https://doi.org/10.4213/sm9891e
  • https://www.mathnet.ru/eng/sm/v215/i2/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:279
    Russian version PDF:8
    English version PDF:27
    Russian version HTML:37
    English version HTML:101
    References:26
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024