Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2023, Volume 214, Issue 11, Pages 1534–1559
DOI: https://doi.org/10.4213/sm9875e
(Mi sm9875)
 

This article is cited in 7 scientific papers (total in 7 papers)

Entropy solution for an equation with measure-valued potential in a hyperbolic space

V. F. Vil'danovaa, F. Kh. Mukminovb

a Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
b Bashkir State Pedagogical University n. a. M. Akmulla, Ufa, Russia
References:
Abstract: We consider the Dirichlet problem in the hyperbolic space for a nonlinear elliptic equation of the second order with singular measure-valued potential. The assumptions on the structure of the equation are stated in terms of a generalized N-function. It is shown that this problem has an entropy solution.
Bibliography: 16 titles.
Keywords: nonlinear elliptic equation, entropy solution, hyperbolic space, Musielak-Orlicz space.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FMRS-2022-0124
Ministry of Education of the Russian Federation 073-03-2023-010
The research of V. F. Vil'danova was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation, in the framework of a state assignment (code of research topic FMRS-2022-0124). The research of F. Kh. Mukminov was carried out with the support of the Ministry of Education of the Russian Federation (agreement no. 073-03-2023-010 of 26.01.2023).
Received: 08.01.2023 and 20.04.2023
Bibliographic databases:
Document Type: Article
MSC: 35D30, 35J25, 35J60
Language: English
Original paper language: Russian

§ 1. Introduction

In this paper we show that the equation

divg(a(x,u,u))+b0(x,u)+b1(x,u)μ=f,fL1(Hn),n2,
where Hn is a hyperbolic space and μ is a nonnegative Radon measure, has an entropy solution.

The concept of an entropy solution of a Dirichlet problem was proposed in [1]. In that paper, in a (not necessarily bounded) domain ΩRn, n2, the authors considered the elliptic equation with L1-data

div(a(x,u))=f(x,u),sup
The function a satisfies certain conditions of boundedness, monotonicity and coercivity. It was proved in [1] that a unique entropy solution of this Dirichlet problem exists.

After that, since the end of the last century entropy solutions became an object of investigation for many experts in Russia and other countries.

Note that we know of no papers where the uniqueness of an entropy solution of a Dirichlet problem is established for an elliptic equation with flow a depending directly on the unknown function u.

In the recent paper [2] its authors considered the problem

\begin{equation*} -\Delta u+\mu g(u)=\sigma, \qquad u|_{\partial\Omega}=0. \end{equation*} \notag
They showed that this problem has a unique very weak solution under certain conditions on the function g, Radon measure \sigma and the nonnegative measure \mu from the Morrey class \mu.

In [3] it was shown that the Dirichlet problem

\begin{equation} \mathcal{L}u= -\operatorname{div}(a(x,u,\nabla u)+F(u))+\mu u=f, \qquad x\in\Omega, \quad u|_{\partial\Omega}=0, \end{equation} \tag{1.1}
where F(u) denotes a vector field F(u)^i= F^i u_{ x_i }, F^i\in L_{1,\mathrm{loc}}(\Omega), is well posed. The case \Omega=\mathbb{R}^n was also treated there. The class \mathcal{L} contains the Schrödinger operator -\Delta+\mu with singular potential \mu. Such operators were considered in [4]. The interest of Russian authors to operators with singular coefficients increased after the paper [5] appeared (see [3] and the references there).

In [6], for the equation

\begin{equation*} -\operatorname{div}(a(x,\nabla u))+a_0(x,u)=\sigma \end{equation*} \notag
with Radon measure \sigma, it was shown that a unique renormalized solution of the Dirichlet problem exists in an arbitrary domain \Omega.

In unbounded domains with infinite measure and N-function M(x,u) = |u|^{ p(x)} the existence of an entropy solution and a renormalized solution of the equation

\begin{equation*} -\operatorname{div}(a(x,u,\nabla u))+ b(x,u,\nabla u) + |u|^{ p(x)-1} = \sigma \end{equation*} \notag
was established for the first time in [7] and [8], for measures \sigma of a special form.

In [9] the Dirichlet problem

\begin{equation*} -\operatorname{div}a(x,u,\nabla u)+M'(x,u)+b(x,u,\nabla u)=\sigma,\qquad u|_{\partial \Omega}=0, \end{equation*} \notag
was considered in an unbounded domain, where the growth of the functions a and b is determined by the generalized N-function M(x,u) and the bounded Radon measure \sigma is insignificantly different from a function in L_1(\Omega). It was assumed that the conjugate function \overline{M}(x,u) satisfies the \Delta_2-condition and b(x,u,\nabla u)u\geqslant0. It was proved that the Dirichlet problem has an entropy solution, and it was shown that it is a renormalized solution at the same time.

The reader can find a more comprehensive survey of results on entropy and renormalized solutions in [9].

In our paper we assume that the functions M(x,u) and \overline{M}(x,u) satisfy the \Delta_2-condition. It is known that the space C_0^\infty(\mathbb{R}^n) can be completed with respect to the norms \displaystyle\biggl(\int|\nabla u|^p\,dx\biggr)^{1/p} and \displaystyle\biggl(\int(|u|^p+|\nabla u|^p)\,dx\biggr)^{1/p} alike, and in the latter case this yields the more ‘narrow’ space W_p^1(\mathbb{R}^n)\subset\mathcal{H}_p^1(\mathbb{R}^n). Usually authors take the second way (for instance, see [6] and [9]). In our paper we use the space \mathcal{H}_M^1(\mathbb{R}^n) obtained on the first way.

Note that, in contrast to [1] and other papers, we do not assume here that the functions b_i, i=0,1, are monotone in u.

§ 2. Statement of the problem and main results

We consider the hyperbolic space \mathbb{H}^n, n\geqslant2, in the form of the Poincaré model in the unit ball B_1 with Riemannian metric

\begin{equation} g_{ij}(x)=\frac{4}{(1-|x|^2)^2}\delta_{ij}, \qquad x\in B_1, \quad i,j=1,\dots, n. \end{equation} \tag{2.1}
Also let g^{ij} be the entries of the inverse matrix of (g_{ij}), and set
\begin{equation*} \partial B_1\equiv\partial_{\infty}\mathbb{H}^n=\{\infty\}. \end{equation*} \notag
The geodesic distance between an arbitrary point x\in \mathbb{H}^n and 0 is defined by
\begin{equation} \rho(x)=\int_0^{|x|}\frac{2}{1-s^2}\,ds=\log \frac{1+|x|}{1-|x|}, \qquad x\in B_1\equiv \mathbb{H}^n, \end{equation} \tag{2.2}
so that
\begin{equation} |x|=\operatorname{tanh}\biggl(\frac{\rho(x)}{2}\biggr). \end{equation} \tag{2.3}

In \mathbb{H}^n the volume element has the form

\begin{equation} d\nu=\sqrt{g}\,dx_1\,dx_2\cdots dx_n=\frac{2^n}{(1-|x|^2)^n}\,dx, \end{equation} \tag{2.4}
where dx is the Lebesgue measure in \mathbb{R}^n.

For each x\in \mathbb{H}^n let T_x \mathbb{H}^n denote the tangent space at this point. Clearly, ({\partial}/{\partial x_1}, {\partial}/{\partial x_2},\dots ,{\partial}/{\partial x_n}) is a basis of T_x \mathbb{H}^n. We denote the scalar product of two vectors by round brackets:

\begin{equation} (\beta,\xi)_g\equiv(\beta,\xi)_{g,x}=\sum_{i,j=1}^n g_{ij}(x)\beta^i\xi^j; \end{equation} \tag{2.5}
furthermore,
\begin{equation*} |\beta|_g=\sqrt{(\beta,\beta)_g} \end{equation*} \notag
for any \beta,\xi\in T_x \mathbb{H}^n, x\in \mathbb{H}^n, where \beta=\sum_{i=1}^n\beta^i{\partial}/{\partial x_i} and \xi=\sum_{i=1}^n\xi^i\partial/\partial x_i for some (\beta^1,\dots ,\beta^n)\in {\mathbb{R}}^n and (\xi^1,\dots ,\xi^n)\in {\mathbb{R}}^n. The gradient \nabla_g u=((\nabla_g u)^1, \dots,(\nabla_g u)^n) is defined by
\begin{equation} (\nabla_g u)^i=\sum_{j=1}^ng^{ij}\frac{\partial u}{\partial x_j}, \qquad i=1,\dots ,n. \end{equation} \tag{2.6}

We let \chi^k(\mathbb{H}^n) denote the set of vector fields in the class C^k on \mathbb{H}^n, k\geqslant0.

The differential df of a function f has the local coordinates \partial f/{\partial x^i}, and {|df|_g=|\nabla_g f|_g}. In a local coordinate chart the Lie derivative of f\in C^1(\mathbb{H}^n) along a vector field X\in \chi^0(\mathbb{H}^n) is defined by

\begin{equation*} (df,X)=(\nabla f, X)_g=\sum_{i=1}^nX^i\frac{\partial f}{\partial x^i}. \end{equation*} \notag

The divergence of a vector field X is defined in a local chart by

\begin{equation*} \operatorname{div}_gX=\sum_{i=1}^n\frac{1}{\sqrt{g}}\,\frac{\partial }{\partial x^i}\bigl(X^i\sqrt{g}\bigr). \end{equation*} \notag

It what follows we let \mathcal{L}(V;W) denote the set of bounded linear operators in the Banach space V that range in the Banach space W.

We denote the action of a functional l\in V^* on a vector v\in V by corner brackets: \langle l, v\rangle.

Here are some requisite facts from the theory of Musielak-Orlicz spaces (see [10]).

Definition 1. Let M(x,z)\colon \mathbb{H}^n \times\mathbb{R}\to\mathbb{R}_+ be a function satisfying the following conditions:

1) M(x,\,\cdot\,) is an N-function in z\in\mathbb{R}, that is, it is (downward) convex, nondecreasing, even and continuous, M(x,0)=0 for \nu-almost all x\in \mathbb{H}^n and \inf_{x\in\mathbb{H}^n} M(x,z)>0 for all z\neq 0; furthermore,

\begin{equation} \lim_{z\to 0}\sup_{x\in\mathbb{H}^n} \frac{{M}(x,z)}{z}=0 \end{equation} \tag{2.7}
and
\begin{equation} \lim_{z\to \infty}\inf_{x\in\mathbb{H}^n}\frac{{M}(x,z)}{z}=\infty; \end{equation} \tag{2.8}
it is obvious that the function M(x,z)/z is nondecreasing;

2) M(\cdot,z) is a measurable function of x\in \mathbb{H}^n for each z\in\mathbb{R}.

Then M(x,z) is called a Musielak-Orlicz function.

The conjugate function \overline{M}(x,\,\cdot\,) of a Musielak-Orlicz function M(x,\,\cdot\,) is defined for \nu-almost all x\in \mathbb{H}^n and all z\geqslant 0 by the equality

\begin{equation*} \overline{M}(x,z)=\sup_{y\geqslant 0} ( yz-M(x,y)). \end{equation*} \notag
Hence we have Young’s inequality
\begin{equation} |zy| \leqslant M(x,z)+ \overline{M}(x,y), \qquad z,y \in \mathbb{R}, \quad x \in \mathbb{H}^n. \end{equation} \tag{2.9}

We assume that

\begin{equation} {M}(x,z),\overline{M}(x,z)\in L_{1,\mathrm{loc}}(\mathbb{H}^n), \qquad z>0. \end{equation} \tag{2.10}

The function M(x,z) satisfies the \Delta_2-condition if there exist a constant C and a function G(x)\in L_1(\mathbb{H}^n) such that

\begin{equation*} M(x,2z)\leqslant CM(x,z)+G(x) \quad \forall\, z\in \mathbb{R}, \quad x\in \mathbb{H}^n. \end{equation*} \notag

We define the Lebesgue space L_{M}(\mathbb{H}^n) as the set of measurable functions u on \mathbb{H}^n with finite Luxemburg norm

\begin{equation*} \|u\|_{M}= \inf\{k>0\colon\varrho(k^{-1}u)\leqslant 1\}\quad\text{and} \quad \varrho(u)= \int_{\mathbb{H}^n}M(x,u)\,d\nu. \end{equation*} \notag
In particular, if k<\|u\|_{M}, then \varrho(k^{-1}u)> 1. Since M is convex in the second argument, the inequality \|u\|_{M}>1 yields the relation \|u\|_{M}\leqslant \varrho(u).

We denote the space of measurable covectors w(x)\colon x\to T_x^*(\mathbb{H}^n) such that |w(x)|_g\in L_{M}(\mathbb{H}^n) by \mathbf{L}_{M}(\mathbb{H}^n).

We assume that both M and \overline{M} satisfy the \Delta_2-condition and condition (2.10). The space L_M(\mathbb{H}^n) is separable and reflexive, and (L_M(\mathbb{H}^n))^*=L_{\overline{M}}(\mathbb{H}^n) (see [11], Corollary 3.6.7). The convergence \|u_j-u\|_{M}\to0 is equivalent to the modular convergence \varrho(u_j-u)\to0.

Given two conjugate Musielak-Orlicz functions M and \overline{M}, if u \in L_M(\mathbb{H}^n) and v \in L_{\overline{M}}(\mathbb{H}^n), then we have Hölder’s inequality

\begin{equation} \biggl|\int_{\mathbb{H}^n} u(x)v(x)\,d\nu\biggr| \leqslant 2\|u\|_{M}\|v\|_{\overline{M}}. \end{equation} \tag{2.11}

We define the space \mathcal{H}_{M}^1(\mathbb{H}^n) as the completion of the function space \mathcal{D}(\mathbb{H}^n) with respect to the norm

\begin{equation*} \|u\|_{M,1}=\|(|du|_g)\|_{M}=\|u\|_{V}. \end{equation*} \notag
For brevity we also denote it by V. We denote the dual space of V with induced norm by V^*. The following estimate is known for the hyperbolic space (see [12], § 8, Theorem 2.28):
\begin{equation*} \|u\|_{p^*,\mathbb{H}^n}\leqslant C\|\nabla_gu\|_{p,\mathbb{H}^n}\quad\text{and} \quad u\in C^\infty_0(\mathbb{H}^n), \quad p^*= \frac{np}{n-p}. \end{equation*} \notag
Hence if a function u has a finite norm \|\nabla_gu\|_{p,\mathbb{H}^n}, then it also has a finite norm \|u\|_{p^*,\mathbb{H}^n}, so that it decays to zero at infinity in a certain sense. We interpret this as the ‘Dirichlet boundary condition’ in the problem under consideration.

For any \sigma>0 let

\begin{equation*} \mathfrak{B}_\sigma=\{x\in\mathbb{H}^n \mid \rho(x)<\sigma\} \end{equation*} \notag
be a ball in the hyperbolic space. Then for each r\in (0,1) we have
\begin{equation*} B_r=\mathfrak{B}_{\ln((1+r)/(1-r))}. \end{equation*} \notag
More precisely, the Euclidean ball B_r is a chart for the hyperbolic ball. Throughout what follows the quantities r and \sigma are related by \sigma=\log((1+r)/(1-r)). Since the metric (g_{ij}) in B_{r} is smooth, the geodesic distances \rho' between pairs of points in \mathfrak{B}_{\sigma} can be estimated in terms of the Euclidean distances between the corresponding points in B_{r}: C^{-1}r'\leqslant \rho'\leqslant Cr'. The spaces W_p^1(\mathfrak{B}_\sigma) and W_p^1(B_r) are identified in a natural way, and the relevant norms are equivalent.

In Lemma 1 we establish the existence of p\in(1,n) such that

\begin{equation} \|u\|_{W_p^1(\mathfrak{B}_\sigma)}\leqslant h(\sigma)\|u\|_{V}, \qquad \sigma>0, \end{equation} \tag{2.12}
where h(\sigma) is an increasing nonnegative function.

Consider an operator of the form

\begin{equation*} \mathcal{B}u=b_0(x,u)+ b_1(x,u)\mu, \end{equation*} \notag
where \mu is a nonnegative Radon measure. We assume that for u,v\in C_0^{\infty}(\mathbb{H}^n) this operator acts by the formula
\begin{equation*} \langle\mathcal{B}u,v\rangle=\int_{\mathbb{H}^n } b_0(x,u)v\,d\nu + \int_{\mathbb{H}^n}b_1(x,u)v\,d\mu. \end{equation*} \notag
We regard the Radon measure \mu on \mathbb{H}^n as a measure on the ball B_1.

Let \mu be a Radon measure with finite total variation and with support in a bounded domain \Omega\subset\mathbb{R}^n. Assume that this measure is extended by zero outside \Omega. Recall that \mu is in the Morrey class \mathbb{M}_s(\Omega), s\geqslant1, if for any ball with centre x we have

\begin{equation*} |B_r(x)|_\mu:=\int_{B_r(x)}\,d|\mu|\leqslant cr^{n(1-1/s)}, \qquad r>0, \quad x\in\Omega. \end{equation*} \notag
Using another notation \mu\in \mathbb{M}_{n/(n-\theta)} (\Omega) for \theta\in[0,n], \theta=n(1-1/s), if we have
\begin{equation*} \int_{B_r(x)}\,d|\mu|\leqslant cr^\theta. \end{equation*} \notag

We assume that there exists s>np/(np+p-n) such that

\begin{equation} \mu\in\mathbb{M}_s(B_r)\quad \forall\,r\in(0,1). \end{equation} \tag{2.13}

Consider the equation

\begin{equation} -\operatorname{div}_g(a(x,u,d u))+\mathcal{B} u=f, \qquad f\in L_1(\mathbb{H}^n). \end{equation} \tag{2.14}
We prove here that it has an entropy solution. The vector field a(x,u,dv) in (2.14) satisfies the following conditions for x\in\mathbb{H}^n.
  • \bullet It is bounded in terms of an increasing function \operatorname{g}(r) and a function {G(x)\in L_1(\mathbb{H}^n)}:
    \begin{equation} \begin{gathered} \, \overline{M}(x,|a(x,r,y)|_g)\leqslant\operatorname{g}(r) \bigl(G(x)+M(x,|y|_g)\bigr), \qquad r\in\mathbb{R}, \quad y\in T_x^{*}\mathbb{H}^n; \end{gathered} \end{equation} \tag{2.15}
  • \bullet it is coercive:
    \begin{equation} (a(x,r,y),y)\geqslant c_0 M(x,|y|_g)-G(x), \qquad r\in\mathbb{R}, \quad c_0>0; \end{equation} \tag{2.16}
  • \bullet it is monotone:
    \begin{equation} (a(x,r,y)-a(x,r,z),y-z)>0, \qquad y\ne z, \ \ y,z\in T_x^{*}\mathbb{H}^n, \ \ r\in\mathbb{R}, \ \ x\in\mathbb{H}^n. \end{equation} \tag{2.17}

Furthermore, let b_i be Carathéodory functions satisfying the inequalities

\begin{equation} |b_i(x,s)|\leqslant \operatorname{g}(r)\widetilde{G}_i(x), \qquad |s|\leqslant r, \quad\rho(x)\leqslant r, \quad i=0,1, \end{equation} \tag{2.18}
where \widetilde{G}_0\in L_{1,\mathrm{loc}}(\mathbb{H}^n) and \widetilde{G}_1\in L_{1,\mu,\mathrm{loc}}(\mathbb{H}^n);
\begin{equation} b_i(x,r)r\geqslant 0, \qquad i=0,1. \end{equation} \tag{2.19}

Assume that there exists an increasing function \widetilde{g}(r), r>0, where {\lim_{r\to\infty}\widetilde{g}(r)=\infty}, such that

\begin{equation} |b_1 (x,s)|>\widetilde{g}(r), \qquad s\geqslant r, \quad x\in \mathbb{H}^n. \end{equation} \tag{2.20}

We define a function T_k(r) by

\begin{equation*} T_k(r)= \begin{cases} k & \text{for }r>k, \\ r & \text{for }|r|\leqslant k, \\ -k & \text{for }r<-k. \end{cases} \end{equation*} \notag

Let \mathring{\mathcal{T}}_{M}^1(\mathbb{H}^n) denote the set of measurable functions u \colon \mathbb{H}^n\to \mathbb{R} such that {T_k(u)\in V} for each k>0.

Definition 2. An entropy solution of the Dirichlet problem for equation (2.14) is a function u\in \mathring{\mathcal{T}}_{M}^1(\mathbb{H}^n) such that for all k>0 and \xi\in C_0^1(\mathbb{H}^n) the inequality

\begin{equation} \int_{\mathbb{H}^n} \bigl((a(x,u, du),dT_k(u-\xi))-fT_k(u-\xi)\bigr)\,d\nu +\langle\mathcal{B}u,T_k(u-\xi)\rangle\leqslant 0 \end{equation} \tag{2.21}
is well defined and valid, that is, all terms in it are finite.

The main result in our paper is as follows.

Theorem 1. Assume that conditions (2.13) and (2.15)(2.20) are met. Then the Dirichlet problem for equation (2.14) has an entropy solution.

§ 3. Technical lemmas

Lemma 1. There exists p\in(1,n) such that

\begin{equation} \|u\|_{W_p^1(\mathfrak{B}_r)}\leqslant h(r)\|u\|_{V} \qquad \forall u\in V, \quad r>0, \end{equation} \tag{3.1}
where h(r) is an increasing nonnegative function.

Proof. It follows from the \Delta_2-conditions on the functions M and \overline{M} (see the proof of Corollary 3.6.7 and Definition 2.1.2 in [11]) that there exist p\in(1,n) and \beta\in(0,1) such that for all \lambda>1 the inequality
\begin{equation} \beta\lambda^pM(x,r)<M(x,\lambda r) \end{equation} \tag{3.2}
holds for all r>0 and almost all x\in\mathbb{H}^n. It is obvious that
\begin{equation*} \inf M(x,1)\int_{\mathfrak{B}_R} |du|_g^p\,d\nu\leqslant \int_{\mathfrak{B}_R} M(x,1)\,d\nu +\int_{\mathfrak{B}_R, |du|_g>1} M(x,1) |du|_g^p\,d\nu. \end{equation*} \notag
Let \|u\|_{V}\leqslant1. Then by (3.2) we have
\begin{equation} \beta\int_{\mathfrak{B}_R, |du|_g>1} M(x,1)|du|_g^p\,d\nu \leqslant\int_{\mathbb{H}^n} M(x,|du|_g)\,d\nu\leqslant1. \end{equation} \tag{3.3}
Taking (2.10) into account we see that the integral \displaystyle\int_{\mathfrak{B}_R} |du|_g^p\,d\nu is bounded in the ball \|u\|_{V}\leqslant1. This yields the inequality
\begin{equation} \||du|_g\|_{p,\mathfrak{B}_R}\leqslant C(R)\| u\|_{V}. \end{equation} \tag{3.4}
Hence we have a continuous embedding
\begin{equation*} V\hookrightarrow W^1_{p}({\mathfrak{B}_R}) \end{equation*} \notag
and (3.1) holds. In fact, if the embedding operator is unbounded on C^\infty_0(\mathbb{H}^n), then there exists a sequence of smooth functions v^k such that
\begin{equation*} \|v^k\|_{W^1_{p}(\mathfrak{B}_R)}\geqslant k\| v^k\|_{V}. \end{equation*} \notag
Multiplying both sides by an appropriate scalar we reduce this inequality to
\begin{equation} 1\geqslant k\| v^k\|_{V}, \end{equation} \tag{3.5}
where \| v^k\|_{W^1_{p}({\mathfrak{B}_R})}=1. By (3.5) we have
\begin{equation*} \| v^k\|_{V}\to0. \end{equation*} \notag
By Kondrashov’s theorem the v^k converge strongly in L_{p}(\mathfrak{B}_R). Taking (3.4) into account we see that v^k\to C\ne0 in the space W^1_{p}({\mathfrak{B}_R}). This contradicts inequality (3.5), which implies that v^k\to 0 in V.

The proof is complete.

Lemma 2. Let u(x) be a measurable function in \mathbb{H}^n. Then \{k\colon \operatorname{meas} \{x\in\mathbb{H}^n: |u(x)|= k\}>0\} is finite or countable.

Proof. We select k_i such that \operatorname{meas}\{x\in\mathfrak{B}_{r}\colon |u(x)|= k_i\}>1/N. These sets are disjoint, so that
\begin{equation*} \operatorname{meas} \{x\in\mathfrak{B}_{r}\colon |u(x)|= k_1\}+\operatorname{meas} \{x\in\mathfrak{B}_{r}\colon |u(x)|= k_2\}+\dotsb \leqslant \operatorname{meas} \mathfrak{B}_{r}. \end{equation*} \notag
Hence there can be at most N \operatorname{meas} \mathfrak{B}_{r} such sets. Then the set \{k \colon \operatorname{meas}\{{x\in\mathfrak{B}_{r}}: |u(x)|= k\}>0\} is finite or countable. Now the required result follows easily.

Lemma 3. Let v be a function such that T_k(v)\in V for all k>k_0 and

\begin{equation} \|T_k(v)\|_V^p\leqslant C k. \end{equation} \tag{3.6}
Then
\begin{equation} \operatorname{meas}\{\mathfrak{B}_{r} \colon |v|\geqslant k\}\leqslant \frac{C_1(r)}{k^{p^*(1-p^{-1})}}\quad\textit{for } k>k_0, \quad p^*=\frac{np}{n-p}. \end{equation} \tag{3.7}

Proof. Using Sobolev’s inequality and (3.1) we obtain
\begin{equation*} \|T_k(v)\|_{p^*,\mathfrak{B}_{r}}\leqslant C(r)\|T_k(v)\|_{W_p^1(\mathfrak{B}_{r})}\leqslant C(r)h(r)\|T_k(v)\|_V. \end{equation*} \notag
For k_1\in(0,k] it is obvious that
\begin{equation*} \operatorname{meas}\{\mathfrak{B}_{r} \colon |v|\geqslant k_1\} \leqslant \frac{\|T_k(v)\|_{p^*,\mathfrak{B}_{r}}^{p^*}}{k_1^{p^*}}\leqslant C_1(r) \frac{\|T_k(v)\|_V^{p^*}}{k_1^{p^*}}\leqslant C_1(r) \frac{Ck^{p^*/p}}{k_1^{p^*}}. \end{equation*} \notag
Hence, setting k_1=k we obtain (3.7).

The proof is complete.

Lemma 4. Let Q\subset \mathbb{H}^n, let \{v^m\}_{m\in \mathbb{N}} be a bounded sequence in L_M(Q), let {v\in L_M(Q)}, and assume that

\begin{equation*} v^m\to v \quad\textit{$\nu$-a.e. in } Q, \qquad m\to\infty. \end{equation*} \notag
Then
\begin{equation*} v^m\rightharpoonup v \quad\textit{weakly in } L_M(Q), \qquad m\to\infty. \end{equation*} \notag

For a bounded domain Q\subset \mathbb{R}^n Lemma 4 was proved in [13]. For Q\subset\mathbb{H}^n the proof is similar.

Remark 1. In what follows, to avoid cumbersome reasoning, in place of statements of the form “from a sequence u^m we can extract a subsequence converging \nu-almost everywhere in \mathbb{H}^n as m\to \infty” we will simply write “a sequence u^m contains a subsequence converging \nu-almost everywhere in \mathbb{H}^n as m\to \infty ”. We will also write “converges weakly along a subsequence” and so on, omitting a subscript indicating the subsequence.

Lemma 5. Let v^j, j\in \mathbb{N}, and v be functions in L_M(Q) such that

\begin{equation*} v^j\to v \quad\textit{$\nu$-a.e. in } Q, \qquad j\to\infty, \end{equation*} \notag
and
\begin{equation*} M(x,v^j)\leqslant h\in L_1(Q), \qquad j\in \mathbb{N}. \end{equation*} \notag
Then
\begin{equation*} v^j\to v \quad\textit{strongly in } L_M(Q), \qquad j\to\infty. \end{equation*} \notag

Lemma 5 is a consequence of Lebesgue’s theorem.

Lemma 6. Let x\in \mathbb{H}^n be a point such that the function a(x,\cdot\,{,}\,\cdot\,) is continuous for v\in\mathbb{R} and z\in T^*_x\mathbb{H}^n and the monotonicity condition (2.17) is met. Let v_m\in\mathbb{R} and z_m\in T^*_x\mathbb{H}^n be sequences such that v_m\to v and

\begin{equation*} \lim_{m\to\infty}\bigl((a(x,v_m,z_m)-a(x,v_m, z)), z_m- z\bigr)=0. \end{equation*} \notag
Then z_m\to z.

Proof. Let s_0=|v|+|z|_g+1 and
\begin{equation*} \Lambda(x,r,y,z)=\bigl(a(x,r,y)-a(x,r,z),y-z), \qquad y,z\in T_x^{*}\mathbb{H}^n, \quad r\in\mathbb{R}. \end{equation*} \notag
It follows from the hypotheses that
\begin{equation} \Lambda(x,v_m,z_m,z)\to0, \qquad m\to \infty. \end{equation} \tag{3.8}
The sequence v_{m} tends to v and |v|<s_0, so we can assume that |v_{m}|< s_0. The following inequality is easy to establish (see [14], formula (2.1)):
\begin{equation} \Lambda(x,r,y,z)\geqslant|y-z|_g\Lambda\biggl(x,r,z+\frac{y-z}{|y-z|_g},z\biggr), \qquad |y-z|_g\geqslant2. \end{equation} \tag{3.9}
Since at the point x the function a is continuous with respect to the other variables, the function \Lambda(x,r,y,z) is continuous in r,y and z. The function \Lambda(x,r,z+e,z) is continuous and positive and attains a positive minimum c(x)>0 on the compact set |e|_g=1,|r|\leqslant s_0, |z|_g\leqslant s_0. Then from (3.9) we obtain
\begin{equation} \Lambda(x,r,y,z)\geqslant|y-z|_gc(x), \qquad |y-z|_g\geqslant2, \quad|r|\leqslant s_0, \quad |z|_g\leqslant s_0. \end{equation} \tag{3.10}
We claim that the sequence z_{m} is bounded. Otherwise a subsequence z_{m_k}\to \infty can be extracted and \Lambda(x,v_{m_k},z_{m_k},z)\geqslant|z_{m_k}-z|_gc(x)\to\infty by (3.10), which contradicts (3.8).

Thus, the sequence z_{m} is bounded. We can extract from it a convergent subsequence z_{m_k}\to z_0. Taking the limit we see that

\begin{equation*} 0=\lim_{k\to\infty}\Lambda(x,v_{m_k},z_{m_k},z)= (a(t,x,v,z_0)-a(t,x,v, z))\cdot( z_0- z)=0. \end{equation*} \notag
This is possible only for z_0= z. Then the whole sequence has the same limit. The proof is complete.

Lemma 7. Assume that conditions (2.15)(2.17) are met in \mathbb{H}^n and let w^j\in V be a sequence such that

\begin{equation} |w^j|\leqslant k \quad\textit{$\nu$-a.e. in } \mathbb{H}^n, \end{equation} \tag{3.11}
\begin{equation} dw^j\rightharpoonup dw \quad \textit{in } \mathbf{L}_M(\mathbb{H}^n), \qquad j\to \infty, \end{equation} \tag{3.12}
\begin{equation} w^j\to w \quad\textit{$\nu$-a.e. in } \mathbb{H}^n, \qquad j\to\infty, \end{equation} \tag{3.13}
and
\begin{equation} \lim_{j\to\infty}\int_{\mathfrak{B}_R}(a(x,w^j,dw^j)-a(x,w^j,d w),d(w^j-w))\,d\nu=0 \quad\forall\, R>0. \end{equation} \tag{3.14}
Then
\begin{equation} dw^j\to dw \quad \textit{strongly in } \mathbf{L}_{M,\mathrm{loc}}(\mathbb{H}^n), \qquad j\to \infty, \end{equation} \tag{3.15}
along a subsequence.

Proof. Set
\begin{equation*} q^j(x)=\Lambda(x,w^j,dw^j,dw), \qquad x\in \mathbb{H}^n, \quad j\in \mathbb{N}. \end{equation*} \notag
By (2.17) the functions \{q^j(x)\}_{j\in \mathbb{N}} are nonnegative, and by (3.14) q^j\,{\to}\, 0 in L_1(\mathfrak{B}_R) as j\to\infty. Hence
\begin{equation*} q^j(x)\to 0 \quad \text{$\nu$-a.e. in } \mathfrak{B}_R \end{equation*} \notag
along some subsequence. Using a diagonal procedure we can extract a subsequence such that
\begin{equation} q^j(x)\to 0 \quad \text{$\nu$-a.e. in } \mathbb{H}^n, \qquad j\to \infty. \end{equation} \tag{3.16}

From (3.12) we obtain

\begin{equation} \|dw^j\|_{M}\leqslant C_3, \qquad j\in \mathbb{N}. \end{equation} \tag{3.17}

Let Q be the full-measure subset of points at which we have (3.16) and (3.13), inequalities (2.15)(2.17) hold and

\begin{equation*} |dw(x)|_g<\infty. \end{equation*} \notag

Using Lemma 6 for v_j= w^j, z_j=d w^j and z=dw we obtain the convergence

\begin{equation} dw^j\to dw \end{equation} \tag{3.18}
in the whole of Q.

It follows from (3.13), since a(x,r,y) is continuous in r and y, that

\begin{equation*} a(x,w^j,dw^j)\to a(x,w,dw) \quad \text{$\nu$-a.e. in } \mathbb{H}^n, \qquad j\to\infty. \end{equation*} \notag
Furthermore, from (2.15) and (3.11) we obtain
\begin{equation*} \overline{M}(x,|a(x,w^j,dw)|_g)\leqslant \operatorname{g}(k)( G(x))+M(x,|dw|_g))\in L_1(\mathbb{H}^n), \qquad j\in \mathbb{N}. \end{equation*} \notag
Lemma 5 yields the convergence
\begin{equation} a(x,w^j,dw)\to a(x,w,dw) \quad\text{strongly in } \mathbf L_{\overline{M}}(\mathbb{H}^n), \qquad j\to\infty. \end{equation} \tag{3.19}
By (3.17) we have the weak convergence
\begin{equation} a(x,w^j,dw^j)\rightharpoonup a(x,w,dw) \quad\text{weakly in } \mathbf L_{\overline{M}}(\mathbb{H}^n), \qquad j\to\infty. \end{equation} \tag{3.20}

We introduce the notation \lambda^j=(a(x,w^j,dw^j),dw^j) and \lambda= (a(x,w,d w),dw). Then it is easy to see that

\begin{equation*} q^j=\lambda^j-(a(x,w^j,dw),dw^j)-(a(x,w^j,dw^j),dw)+(a(x,w^j,dw),dw). \end{equation*} \notag
Using (3.12), (3.14) and (3.19) we can show that
\begin{equation} \int_{\mathfrak{B}_R}\lambda^jd\nu\to \int_{\mathfrak{B}_R}\lambda \,d\nu, \qquad j\to\infty. \end{equation} \tag{3.21}
It follows from (3.13) and (3.18) that
\begin{equation} \lambda^j\to \lambda \quad \text{$\nu$-a.e. in } \mathbb{H}^n, \qquad j\to\infty. \end{equation} \tag{3.22}
Using (2.16) and the \Delta_2-condition we obtain
\begin{equation*} \begin{aligned} \, \lambda^j+\lambda &=(a(x,w^j,dw^j),dw^j)+ (a(x,w,d w),dw) \\ &\geqslant c_0 M(x,|d w^j|_g)+c_0 M(x,|dw|_g)-2G(x) \\ &\geqslant c_0 M\biggl(x,\frac{1}{2}| {d(w^j-w)}|_g\biggr)-2G(x) \\ &\geqslant \frac{c_0}{C} M(x,|d(w^j-w)|_g)-2G(x). \end{aligned} \end{equation*} \notag
From Fatou’s lemma, (3.15) and (3.22) we deduce the inequality
\begin{equation*} \int_{\mathfrak{B}_R}2\lambda \,d\nu\leqslant \lim_{j\to\infty}\inf \int_{\mathfrak{B}_R} \biggl(\lambda^j+\lambda-\frac{c_0}{C} M(x,|d(w^j-w)|_g)\biggr)d\nu. \end{equation*} \notag
Taking (3.21) into account we conclude that
\begin{equation*} 0\leqslant -\lim_{j\to\infty}\sup\int_{\mathfrak{B}_R} M(x,|d(w^j-w^j)|_g)\,d\nu. \end{equation*} \notag
Hence
\begin{equation*} 0\leqslant \lim_{j\to\infty}\inf\int_{\mathfrak{B}_R} M(x,|d(w^j-w)|_g)\,d\nu \leqslant\lim_{j\to\infty}\sup\int_{\mathfrak{B}_R} M(x,|d(w^j-w)|_g)\,d\nu\leqslant 0, \end{equation*} \notag
so that
\begin{equation*} \int_{\mathfrak{B}_R} M(x,|d(w^j-w)|_g)\,d\nu\to 0, \qquad j\to\infty, \end{equation*} \notag
which yields the convergence (3.15).

Lemma 7 is proved.

Lemma 8. Let \{v^j\}_{j\in \mathbb{N}} be a bounded sequence in L_{\infty}(\mathbb{H}^n), let v\in L_{\infty}(\mathbb{H}^n), and assume that

\begin{equation*} v^j\to v \quad\textit{$\nu$-a.e. in } \mathbb{H}^n, \qquad j\to\infty. \end{equation*} \notag
Then
\begin{equation*} v^j\stackrel{*}\rightharpoonup v \quad\textit{weakly in } L_{\infty}(\mathbb{H}^n), \qquad j\to\infty. \end{equation*} \notag

In addition, if h^j, j\in \mathbb{N}, and h are functions in L_M(\mathbb{H}^n) such that

\begin{equation*} h^j \to h \quad\textit{strongly in } L_M(\mathbb{H}^n), \qquad j\to\infty, \end{equation*} \notag
then
\begin{equation*} v^jh^j\to v h \quad\textit{strongly in } L_M(\mathbb{H}^n), \qquad j\to\infty. \end{equation*} \notag

Lemma 8 is a consequence of Lebesgue’s theorem. The next result is usually called Beppo Levi’s theorem.

Lemma 9. Let (S,\sum,\mu) be a space with positive measure and \{f_n\} be a nondecreasing sequence of nonnegative measurable, but not necessarily integrable functions. Then

\begin{equation*} \lim_{n\to\infty}\int_{S}f_n(x)\, d\mu=\int_{S}\sup_{n}f_n(x)\,d\mu. \end{equation*} \notag

The proof can be found in [15], Ch. III, § 6, Corollary 17.

§ 4. Weak solution of approximation problem

4.1. An abstract result on the existence of a weak solution

In fact, here we formulate a known result in a form suited for our purposes.

Let W be a reflexive separable Banach space and K\colon W\to W^* be a weakly continuous operator. Let A(u)=\widetilde{A}(u,u)+K(u), where the operator \widetilde{A} maps W\times W to W^* and is monotone in the second argument:

\begin{equation} \langle \widetilde{A}(u,v),v-w\rangle\geqslant\langle \widetilde{A}(u,w),v-w\rangle, \qquad u,v,w\in W. \end{equation} \tag{4.1}

We assume that

We also assume that there exist p>1 and C_K>1 such that

  • (II) the inequalities
    \begin{equation} \langle \widetilde{A}(u,u),u\rangle\geqslant \alpha\|u\|_{W}^p-C(\|u\|_{W}+1),\qquad u\in W,\quad\alpha>0, \end{equation} \tag{4.2}
    and
    \begin{equation} \langle 2{K}(u),u\rangle+\alpha\|u\|_{W}^p\geqslant0, \qquad u\in W, \end{equation} \tag{4.3}
    hold for \|u\|_{W}\geqslant C_K.

Now we state a result we use in what follows.

Theorem 2. Assume that conditions (I) and (4.1)(4.3) are met and {K} is a weakly continuous operator. Also assume that for each sequence u_j\rightharpoonup u converging weakly in W the condition

\begin{equation} \langle {K} (u_j),u_j-u\rangle\to0 \end{equation} \tag{4.4}
is satisfied. Then A is a surjective operator.

Proof. That the equation A(u)=f is solvable for f\in W^* follows from the fact that A(u)= \widetilde{A}(u,u)+{K}(u) is a pseudomonotone coercive operator (see [16], Ch. 2, Theorem 2.7).

Verifying coercivity. From conditions (II) we obtain

\begin{equation*} \begin{aligned} \, \langle {A}(u),u\rangle &=\langle \widetilde{A}(u,u)+{K}(u),u\rangle\geqslant \langle {K}(u),u\rangle+ \alpha\|u\|_{W}^p-C(\|u\|_{W}+1) \\ &\geqslant \frac{\alpha}{2} \|u\|_{W}^p-C(\|u\|_{W}+1). \end{aligned} \end{equation*} \notag
Hence A is coercive.

Verifying pseudomonotonicity. Let u_j\rightharpoonup u weakly in W, and assume that

\begin{equation} \limsup \langle A(u_j),u_j-u\rangle\leqslant0. \end{equation} \tag{4.5}
We must prove that
\begin{equation} \liminf\langle A(u_j),u_j-v\rangle\geqslant\langle A(u),u-v\rangle \end{equation} \tag{4.6}
for all v\in W.

It follows from (4.4) and (4.5) that

\begin{equation} \limsup \langle \widetilde{A}(u_j,u_j),u_j-u\rangle\leqslant0. \end{equation} \tag{4.7}
By (4.1) we have
\begin{equation} \langle \widetilde{A}(u_j,v),v-w\rangle\geqslant\langle\widetilde{A}(u_j,w),v-w\rangle \quad \forall\, v,w\in W. \end{equation} \tag{4.8}
By condition (I) the sequence \widetilde{A}(u_j,v) converges strongly in W^*, and therefore
\begin{equation} \langle \widetilde{A}(u_j,v),u_j-u\rangle\to0 \quad \forall\, v\in W. \end{equation} \tag{4.9}
Hence by (4.8)
\begin{equation*} \langle \widetilde{A}(u_j,u_j),u_j-u\rangle\geqslant\langle \widetilde{A}(u_j,u),u_j-u\rangle\to0. \end{equation*} \notag
From this, taking (4.7) into account we obtain
\begin{equation} \langle \widetilde{A}(u_j,u_j),u_j-u\rangle\to0. \end{equation} \tag{4.10}
We substitute v=u_j and w=(1-\theta)u+\theta z, \theta\in(0,1), into (4.8). Then we have
\begin{equation*} \begin{aligned} \, &\theta\langle \widetilde{A}(u_j,u_j),u-z\rangle \\ &\qquad\geqslant-\langle \widetilde{A}(u_j,u_j),u_j-u\rangle +\langle \widetilde{A}(u_j,w),u_j-u\rangle+\theta\langle \widetilde{A}(u_j,w),u-z\rangle. \end{aligned} \end{equation*} \notag
Using (4.10) and (4.9) we derive the inequality
\begin{equation*} \theta\liminf\langle \widetilde{A}(u_j,u_j),u-z\rangle\geqslant\theta\langle \widetilde{A}(u,w),u-z\rangle. \end{equation*} \notag
Dividing by \theta and adding the result to (4.10) yields
\begin{equation*} \liminf\langle \widetilde{A}(u_j,u_j),u_j-z\rangle\geqslant\langle \widetilde{A}(u,(1-\theta)u+\theta z),u-z\rangle. \end{equation*} \notag
Letting \theta tend to zero and using the fact that \widetilde{A} is semicontinuous we obtain
\begin{equation*} \liminf\langle \widetilde{A}(u_j,u_j),u_j-z\rangle\geqslant\langle \widetilde{A}(u,u),u-z\rangle. \end{equation*} \notag
Using the fact that the operator {K} is weakly continuous and (4.4) we can write
\begin{equation*} \langle \widetilde{K}(u),u-z\rangle=\lim\langle \widetilde{K}(u_j),u-z\rangle=\lim\langle \widetilde{K}(u_j),u_j-z\rangle. \end{equation*} \notag
From this we deduce (4.6).

Theorem 2 is proved.

4.2. Examples of operators K and vector fields a(x,u,du). An approximation problem

Now let W coincide with the space V.

In view of (2.15) the vector field a^m(x,r,y)=a(x,T_m(r),y) defines an operator \widetilde{A}\colon V\times V\to V^* . In the current context it acts by the formula

\begin{equation*} \langle \widetilde{A}(u,v),w\rangle=\int_{\mathbb{H}^n}(a^m(x,u,dv), d w) \,d\nu, \qquad u,v,w\in V. \end{equation*} \notag
From (2.16) it follows that
\begin{equation*} \langle \widetilde{A}(u,u),u\rangle\geqslant c_0\varrho(|du|_g)-\int_{\mathbb{H}^n}G(x)\,d\nu. \end{equation*} \notag
If \|u\|_{V}>1, then by (3.2), for k=\|u\|_{V}-\varepsilon we have
\begin{equation} \begin{aligned} \, \notag \varrho(|du|_g) &=\int_{\mathbb{H}^n} M(x, |du|_g)\,d\nu =\int_{\mathbb{H}^n} M\biggl(x, k\frac{|du|_g}{k}\biggr)\,d\nu \\ &\geqslant\int_{\mathbb{H}^n} \beta k^p M\biggl(x,\frac{|du|_g}{k} \biggr)\,d\nu >\beta k^p = \widetilde{\beta}\|u\|_{V}^p. \end{aligned} \end{equation} \tag{4.11}
Hence the operator \widetilde{A} satisfies (4.2).

The operator K satisfies condition (4.3), provided that

\begin{equation} \langle 2{K}(u),u\rangle+c_0\varrho(|du|_g)\geqslant0, \qquad u\in V, \end{equation} \tag{4.12}
for \|u\|_{V}\geqslant C_K.

Now we turn to operators K defined by formulae of the form

\begin{equation} \langle K(u),v\rangle=\int_{\Omega}b(x,u)v(x)\,d\mu. \end{equation} \tag{4.13}
In the case when the measure \mu is nonnegative and b(x,u)u(x)\geqslant0, inequality (4.3) clearly holds. Also note that the compact operator K satisfies (4.4).

Let \mu be a Radon measure with finite total variation and with support in a bounded domain \Omega\subset\mathbb{R}^n. Recall that \mu\in \mathbb{M}_{n/(n-\theta)} (\Omega) for \theta\in[0,n] if

\begin{equation*} \int_{B_r(x)}\,d|\mu|\leqslant cr^\theta. \end{equation*} \notag
The delta function \delta belongs to the class \mathbb{M}_1(\Omega). Functions in L_s(\Omega) define measures in the class \mathbb{M}_s(\Omega) by Hölder’s inequality. If
\begin{equation*} f\in L_q(\Omega\cap\{x^1=\dots =x^k=0\})\quad\text{and} \quad x'=(0,\dots ,0,x^{k+1},\dots ,x^{n}), \end{equation*} \notag
then
\begin{equation*} \int_{B_r(x_0)}|f(x)|\,dx'\leqslant\|f\|_q\biggl(\int_{B_r(x_0)\cap\{x^1=\dots =x^k=0\}}\,dx'\biggr)^{1-1/q} \leqslant cr^{(n-k)(1-1/q)}, \end{equation*} \notag
and this function also defines a measure in the Morrey class with support on a plane of dimension n-k. For q<{\theta p}/(n-p) and a nonnegative measure \mu\in\mathbb{M}_{n/(n-\theta)} (\Omega) it is known that there is a compact embedding
\begin{equation} W_p^1(\Omega)\hookrightarrow L_{q,\mu}(\Omega). \end{equation} \tag{4.14}
This is a special case of a general result (see [2], Proposition 2.5). In the case of the Lebesgue measure we have a compact embedding
\begin{equation*} W_p^1(\Omega)\hookrightarrow L_{q_0}(\Omega) \end{equation*} \notag
for q_0<n p/(n-p).

Assume that the Nemytskii operator u\to b(x,u(x)) is continuous from L_{q,\mu}(\Omega) to L_{q',\mu}(\Omega), {1}/{q}+{1}/{q'}=1 . It is sufficient for this that b be a Carathéodory function and

\begin{equation} |b(x,r)|^{q'}\leqslant C(|r|^q+G_\mu(x)), \qquad r\in \mathbb{R}, \quad G_\mu\in L_{1,\mu}(\Omega). \end{equation} \tag{4.15}
For a nonnegative measure \mu\in\mathbb{M}_s (\Omega) and 1\leqslant q<\theta p/(n-p), \theta=n(1- 1/s), consider the bounded operator K\colon W_p^1(\Omega)\to L_{q',\mu} (\Omega) acting by formula (4.13). It is obvious that
\begin{equation} |\langle K(u),v\rangle|\leqslant C(\|u\|_{W_p^1(\Omega)}+C_1)\|v\|_{W_p^1(\Omega)}. \end{equation} \tag{4.16}
Thus, as a map from W_p^1(\Omega) to (W_p^1(\Omega))^*, K is a compact operator.

Next consider the hyperbolic space \mathbb{H}^n. Recall that the geodesic distances \rho' between pairs of points in \mathfrak{B}_{\sigma} are estimated in terms of the Euclidean distances between the corresponding points in B_{r}: C^{-1}r'\leqslant \rho'\leqslant Cr'. Hence the Morrey class \mathbb{M}_s(\mathfrak{B}_{\sigma}) of measures on \mathbb{H}^n can also be viewed as a Morrey class \mathbb{M}_s({B}_{r}) of measures on the ball B_{r} in Euclidean space. Then, under the assumption (4.15), for \mu\in\mathbb{M}_s(\mathfrak{B}_{\sigma}) it is easy to see that the operator

\begin{equation*} K\colon W_p^1(\mathfrak{B}_{\sigma})\to L_{q',\mu} (\mathfrak{B}_{\sigma}), \qquad q<\frac{n\theta}{n-p}, \quad \theta=n\biggl(1-\frac 1s\biggr), \end{equation*} \notag
that acts by the formula
\begin{equation} \langle K(u),v\rangle=\int_{\mathfrak{B}_{\sigma}}b(x,u(x))v(x)\,d\mu \end{equation} \tag{4.17}
is compact. By (3.1), K is compact as a map from V to V^*.

Set

\begin{equation*} \begin{gathered} \, f^m(x)=T_m(f(x))\chi_{m}(x), \\ \chi_{m}(x)= \begin{cases} 1 & \text{for } x\in \mathfrak{B}_m, \\ 0 & \text{for } x\notin \mathfrak{B}_m, \end{cases} \end{gathered} \end{equation*} \notag
and
\begin{equation*} b_i^m(x,r)=T_m(b_i(x,r))\chi_{m}(x), \qquad i=0,1. \end{equation*} \notag
Clearly, for r\in \mathbb{R}
\begin{equation} |b_i^m(x,r)|\leqslant |b_i(x,r)|\quad\text{and} \quad |b_i^m(x,r)|\leqslant m\chi_{m}(x), \qquad x\in \mathbb{H}^n. \end{equation} \tag{4.18}
In addition, using (2.19) we see that
\begin{equation} b_i^m(x,r)r\geqslant 0, \qquad x\in \mathbb{H}^n, \quad r\in \mathbb{R}. \end{equation} \tag{4.19}

Using inequality (3.1) it is easy to show that f^m\in V^*,

\begin{equation} f^m\to f \quad \text{in } L_1(\mathbb{H}^n), \qquad m\to\infty, \end{equation} \tag{4.20}
and, furthermore,
\begin{equation} |f^m(x)|\leqslant |f(x)|\quad\text{and} \quad |f^m(x)|\leqslant m\chi_{m}(x), \qquad x\in \mathbb{H}^n, \quad m\in\mathbb{N}. \end{equation} \tag{4.21}

The operator \mathcal{B}_m \colon \ V\to V^* acts by the formula

\begin{equation*} \langle\mathcal{B}_m u,v\rangle=\int_{\mathbb{H}^n}b_0^m(x,u)v\,d\nu +\int_{\mathbb{H}^n}b_1^m(x,u)v\,d\mu=\langle K_0 u,v\rangle+\langle K_1 u,v\rangle. \end{equation*} \notag
Using (4.18) and the above arguments we can easily prove that \mathcal{B}_m is compact.

Consider the equation

\begin{equation} -\operatorname{div}_g a^m(x,u,du)+\mathcal{B}_mu=f^m(x), \qquad x\in \mathbb{H}^n, \quad m\in\mathbb{N}, \end{equation} \tag{4.22}
where a^m(x,r,y)=a(x,T_m(r),y).

A weak solution of the Dirichlet problem for equation (4.22) is a function u^m\in V satisfying the integral identity

\begin{equation} \int_{\mathbb{H}^n}(a(x,T_m(u^m),du^m),dv) \,d\nu + \langle\mathcal{B}_m u^m,v\rangle=\langle f^m,v\rangle \end{equation} \tag{4.23}
for each function v\in \mathcal{D}(\mathbb{H}^n). It can easily be proved that relation (4.23) also holds for all v\in V.

By Theorem 2, for each m\in\mathbb{N} the Dirichlet problem for equation (4.22) has a weak solution u^m\in V.

§ 5. Existence of a solution

Proof of Theorem 1. In (4.23) we set v=T_{k,h} (u^m)=T_k(u^m-T_h(u^m)). Taking (4.19) into account we obtain
\begin{equation} \begin{aligned} \, &\int_{\{\mathbb{H}^n \colon h\leqslant|u^m|<k+h\}}(a^m(x,u^m,du^m),du^m)\, d\nu \nonumber \\ &\qquad\qquad +k \int_{\{\mathbb{H}^n \colon |u^m|\geqslant k+h\}}|b_0^m(x,u^m)|\, d\nu+k \int_{\{\mathbb{H}^n \colon |u^m|\geqslant k+h\}}|b_1^m(x,u^m)|\,d\mu \nonumber \\ &\qquad\qquad +\int_{\{\mathbb{H}^n \colon h\leqslant|u^m|< k+h\}}b_0^m(x,u^m)u^m\biggl(1-\frac{h}{|u_m|}\biggr) \,d\nu \nonumber \\ \nonumber &\qquad\qquad +\int_{\{\mathbb{H}^n \colon h\leqslant|u^m|< k+h\}} b_1^m(x,u^m)u^m\biggl(1-\frac{h}{|u_m|}\biggr)\, d\mu \\ &\qquad\leqslant k\int_{\{\mathbb{H}^n \colon |u^m|\geqslant h\}}|f^m|\,d\nu. \end{aligned} \end{equation} \tag{5.1}
Taking (4.19) into account and using (4.21) and (2.16), from (5.1) we deduce
\begin{equation} \begin{aligned} \, &\int_{\{\mathbb{H}^n \colon h\leqslant|u^m|<k+h\}}((a^m(x,u^m,du^m),du^m)+G(x))\,d\nu \nonumber \\ &\qquad\qquad +k\int_{\{\mathbb{H}^n \colon |u^m|\geqslant k+h\}}|b_0^m(x,u^m)| \,d\nu+ k\int_{\{\mathbb{H}^n \colon |u^m|\geqslant k+h\}}|b_1^m(x,u^m)|\,d\mu \nonumber \\ &\qquad \leqslant\int_{\{\mathbb{H}^n \colon |u^m|\geqslant h\}}(k|f|+|G|)\,d\nu, \qquad m\in\mathbb{N}. \end{aligned} \end{equation} \tag{5.2}

Setting h=0 in (5.1) and using inequality (2.16) we obtain

\begin{equation} \begin{aligned} \, &\int_{\{\mathbb{H}^n \colon |u^m|<k\}}c_0 M(x,|d u^m|_g) \,d\nu \nonumber \\ &\qquad\qquad+\int_{\{\mathbb{H}^n \colon |u^m|<k\}}b_0^m(x,u^m)u^m \,d\nu +k\int_{\{\mathbb{H}^n \colon |u^m|\geqslant k\}}|b_0^m(x,u^m)| \,d\nu \nonumber \\ &\qquad\qquad+\int_{\{\mathbb{H}^n \colon |u^m|<k\}}b_1^m(x,u^m)u^m\,d\mu +k\int_{\{\mathbb{H}^n \colon |u^m|\geqslant k\}}|b_1^m(x,u^m)|\,d\mu \nonumber \\ &\qquad\leqslant (k+1)C_1, \qquad m\in\mathbb{N}. \end{aligned} \end{equation} \tag{5.3}

It follows from (5.3) that

\begin{equation} \begin{aligned} \, \nonumber &\int_{\{\mathbb{H}^n \colon |u^m|<k\}}M(x,|du^m|_g)\,d\nu \\ &\qquad=\int_{\mathbb{H}^n}M(x,|dT_k (u^m)|_g)\,d\nu\leqslant C_1(k+1), \qquad k>1, \quad m\in\mathbb{N}. \end{aligned} \end{equation} \tag{5.4}
Hence T_k (u^m)\in V for each k>1, and it follows from (4.11) that
\begin{equation} \| T_k(u^m)\|_{V}^p\leqslant C_2k, \qquad m\in\mathbb{N}. \end{equation} \tag{5.5}
Since V is reflexive, we can extract a subsequence
\begin{equation} T_k (u^m)\rightharpoonup v_k\in V, \qquad m\to \infty, \end{equation} \tag{5.6}
converging weakly in V. In view of (5.5) we can use Lemma 3, which yields the estimate
\begin{equation} \operatorname{meas}\{x\in\mathfrak{B}_{R}\colon |u^m(x)|\geqslant k\}\leqslant \frac{C(R)}{k^{p^*(1-p^{-1})}}, \qquad m>k>k_0. \end{equation} \tag{5.7}
Then, taking a sufficiently large R first and then selecting k, we obtain
\begin{equation} \begin{aligned} \, \nonumber &\int_{\{\mathbb{H}^n \colon |u^m|\geqslant k\}}(|f|+|G|)\,d\nu\leqslant\int_{\{\mathfrak{B}_R \colon |u^m|\geqslant k\}}(|f|+|G|)\,d\nu \\ &\qquad\qquad +\int_{\{\mathbb{H}^n \colon \rho(x)\geqslant R\}}(|f|+|G|)\,d\nu\leqslant\varepsilon(k), \qquad m>k, \end{aligned} \end{equation} \tag{5.8}
where \varepsilon(k)\to0 as k\to\infty.

By (2.16) the first integral in (5.2) is nonnegative, so that for k=1 we can write the inequality

\begin{equation} \begin{gathered} \, \int_{\{\mathbb{H}^n \colon |u^m|\geqslant h\}}|b_0^m(x,u^m)|\,d\nu+\int_{\{\mathbb{H}^n \colon |u^m|\geqslant h\}}|b_1^m(x,u^m)|\,d\mu <C, \qquad m\in\mathbb{N}. \end{gathered} \end{equation} \tag{5.9}
Using (2.20), for m> \widetilde{g}(h) we obtain
\begin{equation*} \int_{\{\mathbb{H}^n \colon |u^m|\geqslant h\}}\widetilde{g}(h)\chi_{m}(x)\,d\mu <C. \end{equation*} \notag
Hence for each R>0 we have
\begin{equation} \operatorname{meas}_\mu\{x\in\mathfrak{B}_{R}\colon |u^m(x)|\geqslant h\}\leqslant \frac{C}{\widetilde{g}(h)}, \qquad m>\widetilde{g}(h)+R. \end{equation} \tag{5.10}

Now we establish convergence with respect to a subsequence, namely,

\begin{equation} u^m\to u \quad \nu\text{-a.e. and } \mu\text{-a.e. in } \mathbb{H}^n, \qquad m\to \infty. \end{equation} \tag{5.11}

The sequence T_s (u^m) is bounded in V, and by (3.1) it is bounded in W_p^1(\mathfrak{B}_{R}). By Kondrashov’s theorem we can extract a convergent subsequence such that T_s (u^m) \to \widetilde{v}_{s} in L_{p}(\mathfrak{B}_{R}) as m\to\infty. Hence T_s(u^m)\to \widetilde{v}_{s} \nu-almost everywhere in \mathfrak{B}_{R}. By (5.6) we have v_{s}=\widetilde{v}_{s} \nu-almost everywhere in \mathfrak{B}_{R}. Now using the diagonal procedure with respect to R\in \mathbb{N} we find a subsequence such that T_s(u^m)\to {v}_{s} \nu-almost everywhere in \mathbb{H}^n. Let \Omega denote the set of points in \mathbb{H}^n at which the sequence u^m(x) has a finite limit. We denote this limit by u(x). Then for x\in\Omega we have

\begin{equation*} v_s(x)=\lim T_s(u^m(x))=T_s\lim u^m(x)=T_s(u). \end{equation*} \notag
If \lim |T_s(u^m(x))|<s at some points x, then \lim T_s(u^m(x))=v_s(x)=\lim u^m(x), that is, x\in\Omega. Thus, for \nu-almost all x\notin\Omega we have
\begin{equation*} \lim T_s(u^m(x))=s\,\operatorname{sign}(v_s(x)) \end{equation*} \notag
for each s>0. In particular,
\begin{equation*} \lim T_{s+h}(u^m(x))=(s+h) \operatorname{sign}(v_{s+h}(x)). \end{equation*} \notag
Then |u^m(x)|>s for large m, and therefore \lim |u^m(x)|=\infty. By (5.7) the set of such points in \mathfrak{B}_{R} has measure zero. Hence we conclude that the difference \mathbb{H}^n\setminus \Omega has measure zero, which proves the convergence (5.11) regarding the measure \nu. Then v_s(x)=T_s(u) for \nu-almost all x\in \mathbb{H}^n.

Also note that T_s (u^m) \to v_{s} in L_{q,\mu}(\mathfrak{B}_{R}), as follows from (4.14) and (3.1). Then T_s(u^m)\to v_{s} \mu-almost everywhere in \mathfrak{B}_{R} (along a subsequence). Next, using a diagonal procedure with respect to R\in \mathbb{N} we establish the following convergence along a subsequence:

\begin{equation} T_s(u^m)\to T_s(u), \qquad m\to\infty, \end{equation} \tag{5.12}
\mu-almost everywhere in \mathbb{H}^n, so that we also prove (5.11).

Relation (5.6) can be written as

\begin{equation} dT_k (u^m)\rightharpoonup dT_k(u) \quad \text{in } L_{M}(\mathbb{H}^n), \qquad m\to \infty. \end{equation} \tag{5.13}

We show that for all s>0 and R>0

\begin{equation} b_0^m(x,T_s(u^m)) \to b_0(x, T_s(u)) \quad\text{in } L_{1}(\mathfrak{B}_R), \qquad m\to \infty, \end{equation} \tag{5.14}
and
\begin{equation} b_1^m(x,T_s(u^m)) \to b_1(x, T_s(u)) \quad\text{in } L_{1,\mu}(\mathfrak{B}_R), \qquad m\to \infty. \end{equation} \tag{5.15}
It follows from (5.11) that
\begin{equation} b_0(x,T_s(u^m)) \to b_0(x, T_s(u)) \quad \nu\text{-a.e. in } \mathbb{H}^n, \qquad m\to \infty. \end{equation} \tag{5.16}
By (2.18) we have |b_0^m(x,T_s(u^m))|\leqslant \operatorname{g}(s)\widetilde{G_0}(x)\in L_{1}(\mathfrak{B}_R), so that (5.14) is a consequence of Lebesgue’s theorem. In a similar way we prove (5.15).

At this step we establish the strong convergence

\begin{equation} dT_k(u^m)\to dT_k(u) \quad \text{in } L_{M,\mathrm{loc}}(\mathbb{H}^n), \qquad m\to \infty. \end{equation} \tag{5.17}

From (5.4) and (2.15), for each k>1 we obtain the estimate

\begin{equation} \|a(x,T_k(u^m),d T_k(u^m))\|_{ \overline{M},\mathbb{H}^n}\leqslant C_5(k), \qquad m\in\mathbb{N}. \end{equation} \tag{5.18}

Let k>0, h>k+1 and

\begin{equation*} z^m=T_k(u^m)-T_k(u),\qquad m\in \mathbb{N}. \end{equation*} \notag
Then by (5.12) we have
\begin{equation} z^m\to 0 \quad \text{$\nu$-a.e. in } \mathbb{H}^n, \qquad m\to \infty, \end{equation} \tag{5.19}
and also
\begin{equation} |z^m|\leqslant 2k, \qquad m\in \mathbb{N}. \end{equation} \tag{5.20}
We pointed out above that
\begin{equation} \forall\, R>0\colon \ |z^m| \to 0\quad\text{in } L_{q,\mu}(\mathfrak{B}_{R}),\qquad m\to \infty. \end{equation} \tag{5.21}

Using (5.19) and (5.20), from Lemma 8 we derive the convergence

\begin{equation} |z^m| \stackrel{*}\rightharpoonup 0 \quad\text{in } L_{\infty}(\mathbb{H}^n), \qquad m\to \infty. \end{equation} \tag{5.22}
By Lemma 5, for F\in L_M(\mathbb{H}^n) we have
\begin{equation} Fz^m\to 0 \quad\text{in } L_M(\mathbb{H}^n), \qquad m\to \infty. \end{equation} \tag{5.23}

Set \eta_R(r)=\min(1,\max(0,R+1-r)). Substituting z^m\eta_R(\rho(x))\eta_{h-1}(|u^m|) into (4.23) as a test function we obtain

\begin{equation} \begin{aligned} \, I_1^{mh} &=\int_{\mathbb{H}^n}\bigl(a(x,T_h(u^m),dT_h(u^m)),d(\eta_R(\rho(x)) z^m\eta_{h-1}(|u^m|))\bigr)\,d\nu \nonumber \\ &=-\int_{\mathbb{H}^n} z^m\eta_R(\rho(x))\eta_{h-1}(|u^m|)b_0^m(x,u^m)\,d\nu \nonumber \\ &\qquad - \int_{\mathbb{H}^n}b_1^m(x,u^m)z^m\eta_R(\rho(x))\eta_{h-1}(|u^m|)\,d\mu \nonumber \\ &\qquad +\int_{\mathbb{H}^n} f^mz^m\eta_R(\rho(x))\eta_{h-1}(|u^m|)\,d\nu \nonumber \\ &=I_2^{mh}+I_3^{mh}+I_4^{mh},\qquad m\in\mathbb{N}. \end{aligned} \end{equation} \tag{5.24}

Estimates for the integrals I_2^{mh}-I_4^{mh}. By the inequality

\begin{equation*} \eta_R(\rho(x))\eta_{h-1}(|u^m|)|b_0^m(x,u^m)|\leqslant \operatorname{g}(h) \widetilde{G}_0(x), \end{equation*} \notag
which follows from (2.18), and by the convergence (5.19), from Lebesgue’s theorem we obtain
\begin{equation} |I_2^{mh}|\leqslant\int_{\mathfrak{B}_{R+1}}|z^m|\operatorname{g}(h) \widetilde{G}_0(x)\,d\nu=\varepsilon_{1}(m,h). \end{equation} \tag{5.25}
Here and in what follows
\begin{equation} \lim_{m\to\infty}\varepsilon_{i}(m,h)=0. \end{equation} \tag{5.26}
In a quite similar way,
\begin{equation} |I_3^{mh}|\leqslant\varepsilon_{2}(m,h). \end{equation} \tag{5.27}
Using (4.21), (5.19) and (5.20) we obtain
\begin{equation} |I_4^{mh}|\leqslant\int_{\mathbb{H}^n} |fz^m|\,d\nu=\varepsilon_{3}(m). \end{equation} \tag{5.28}

It is obvious that z^mu^m\geqslant0 for |u^m|\geqslant k, so for |u^m|\geqslant h-1> k we have z^m|u^m|=|z^m|u^m. Using this and (5.20) we obtain the estimate

\begin{equation*} \begin{aligned} \, I_{12}^{mh} &=-\int_{\{\mathbb{H}^n\colon h-1\leqslant |u^m|<h\}}\bigl(a(x,T_h(u^m),dT_h(u^m)),d|u^m| \bigr) \eta_R(\rho(x)) z^m\,d\nu \\ &=-\int_{\{\mathbb{H}^n\colon h-1\leqslant |u^m|<h\}}\bigl((a(x,u^m,du^m),du^m )+G(x)\bigr) \eta_R(\rho(x)) |z^m|\,d\nu \\ &\qquad + \int_{\{\mathbb{H}^n\colon h-1\leqslant |u^m|<h\}}G(x) \eta_R(\rho(x)) |z^m|\,d\nu. \end{aligned} \end{equation*} \notag
In view of (5.2) and (5.8) we see that
\begin{equation} |I_{12}|^{mh}\leqslant\varepsilon(h), \qquad m\geqslant \widetilde{g}(h)+R, \end{equation} \tag{5.29}
where \varepsilon(h)\to 0 as h\to\infty.

Now, using (5.18) and the inequality |d\eta_R(\rho(x))|_g\leqslant1 we obtain

\begin{equation} \begin{gathered} \, I^{mh}_{13} =\int_{\{\mathbb{H}^n\colon |u^m|<h\}}\bigl(a(x,T_h(u^m),d T_h(u^m)),d\eta_R(\rho(x))\bigr)\eta_{h-1}(|u^m|)z^m\,d\nu, \nonumber \\ |I^{mh}_{13}|\leqslant C_7(h)\|z^m\|_{M,\mathfrak{B}_{R+1}}=\varepsilon_5(m,h). \end{gathered} \end{equation} \tag{5.30}

It is easy to show that I^{mh}_1=I^{mh}_{11}+I^{mh}_{12}+I^{mh}_{13}, where

\begin{equation*} I^{mh}_{11}=\int_{\mathbb{H}^n}\bigl(a(x,T_h(u^m),dT_h(u^m)),dz^m\bigr) \eta_R(\rho(x))\eta_{h-1}(|u^m|)\,d\nu. \end{equation*} \notag
From (5.25)(5.30) we can conclude that
\begin{equation} |I^{mh}_{11}|\leqslant\varepsilon_6(m,h)+\varepsilon(h), \qquad m> \widetilde{g}(h)+R. \end{equation} \tag{5.31}
After elementary transformations we arrive at the equalities
\begin{equation*} \begin{aligned} \, I^{mh}_{11} &=\int_{\mathbb{H}^n}\bigl(a(x,T_h(u^m),dT_h(u^m)),dT_k(u^m)\bigr) \eta_R(\rho(x))\eta_{h-1}(|u^m|)\,d\nu \\ &\qquad -\int_{\mathbb{H}^n}\bigl(a(x,T_h(u^m),dT_h(u^m)),dT_k(u)\bigr) \eta_R(\rho(x))\eta_{h-1}(|u^m|)\,d\nu \\ &=\int_{\mathbb{H}^n}\bigl(a(x,T_k(u^m),dT_k(u^m)),dT_k(u^m)\bigr) \eta_R(\rho(x))\,d\nu \\ &\qquad -\int_{\mathbb{H}^n}\bigl(a(x,T_h(u^m),dT_h(u^m)),dT_k(u) \eta_R(\rho(x))\eta_{h-1}(|u^m|)\bigr)\,d\nu \\ &=\int_{\mathbb{H}^n}\bigl(a(x,T_k(u^m),d T_k(u^m)),dz^m\bigr) \eta_R(\rho(x))\,d\nu \\ &\qquad +\int_{\mathbb{H}^n}\bigl(a(x,T_k(u^m),dT_k(u^m)),dT_k(u)\bigr) \eta_R(\rho(x))\,d\nu \\ &\qquad -\int_{\mathbb{H}^n}\bigl(a(x,T_h(u^m),d T_h(u^m)),dT_k(u)\bigr) \eta_R(\rho(x))\eta_{h-1}(|u^m|)\,d\nu. \end{aligned} \end{equation*} \notag

The integrands in the last two integrals coincide for |u^m|< k, so it is obvious that

\begin{equation} \begin{aligned} \, \nonumber I^{mh}_{11} &=\int_{\mathbb{H}^n}\bigl(a(x,T_k(u^m),dT_k(u^m)),dz^m\bigr)\eta_R(\rho(x))\,d\nu \\ &\qquad +\int_{\{\mathbb{H}^n\colon |u^m|\geqslant k\}}\bigl(a(x,T_k(u^m),d T_k(u^m)) \nonumber \\ &\qquad\qquad-\eta_{h-1}a(x,T_h(u^m),dT_h(u^m)),dT_k(u)\bigr)\eta_R(\rho(x))\,d\nu \nonumber \\ &=I_{5}^m+I_{6}^{mh}. \end{aligned} \end{equation} \tag{5.32}

In view of (5.18) we can establish the inequality

\begin{equation} \begin{gathered} \, |I^{mh}_{6}|\leqslant C_{9}(h,k)\|\chi_{\{\mathfrak{B}_{R+1}\colon |u^m|\geqslant k\}}\, d T_k(u)\|_{M}. \end{gathered} \end{equation} \tag{5.33}

Using Lemma 2 we select k such that \operatorname{meas}\{x\in\mathfrak{B}_{R+1}\colon |u(x)|= k\}=0. Then by (5.11) we have

\begin{equation*} \chi_{\{\mathfrak{B}_{R+1}\colon |u^m|\geqslant k\}}\, dT_k(u)\to \chi_{\{\mathfrak{B}_{R+1}\colon |u|\geqslant k\}}\, dT_k(u)= 0 \quad \text{$\nu$-a.e. in } \mathfrak{B}_{R+1}, \quad m\to\infty. \end{equation*} \notag
In view of (5.13) we have M(x,|d T_k(u)|_g)\in L_1(\mathbb{H}^n), and from Lebesgue’s theorem we deduce that
\begin{equation*} \chi_{\{\mathfrak{B}_{R+1}\colon |u^m|\geqslant k\}}\, dT_k(u)\to 0 \quad \text{in } L_M(\mathbb{H}^n), \qquad m\to\infty. \end{equation*} \notag
Hence from (5.33) we obtain
\begin{equation} I^{mh}_{6}=\varepsilon_8(m,h). \end{equation} \tag{5.34}

It follows from (5.31), (5.32) and (5.34) that

\begin{equation} |I^m_{5}|\leqslant \varepsilon_9(m,h)+\varepsilon(h). \end{equation} \tag{5.35}
Using the notation
\begin{equation*} q^m(x)=\Lambda\bigl(x,T_k(u^m),dT_k(u^m),dT_k(u)\bigr), \end{equation*} \notag
from Lemma 6 we obtain
\begin{equation*} \begin{aligned} \, 0 &\leqslant \int_{\mathbb{H}^n}q^m(x) \eta_R(\rho(x))\,d\nu=I^{m}_{5}-I_{54}^m \\ &=I^{m}_{5}-\int_{\mathbb{H}^n}\eta_R(\rho(x)) \bigl(a(x,T_k(u^m),dT_k(u)),d(T_k(u^m)-T_k(u))\bigr) \,d\nu. \end{aligned} \end{equation*} \notag

Similarly to how we deduced (3.19), using (5.12) we can show that

\begin{equation*} \begin{aligned} \, &\eta_R(\rho(x))a(x,T_k(u^m),dT_k (u)) \\ &\qquad \to \eta_R(\rho(x)) a(x,T_k(u),dT_k(u)) \quad\text{in } L_{\overline{M}}(\mathbb{H}^n), \qquad m\to \infty. \end{aligned} \end{equation*} \notag
In combination with (5.13), this yields
\begin{equation} I^m_{54}=\int_{\mathbb{H}^n}\bigl(a(x,T_k(u^m),dT_k(u)),d(T_k(u^m)-T_k(u))\bigr) \eta_R(\rho(x))\,d\nu=\varepsilon_{10}(m,h). \end{equation} \tag{5.36}

From (5.35) and (5.36) we obtain

\begin{equation*} \int_{\mathbb{H}^n}q^m(x)\eta_R(\rho(x)) \,d\nu\leqslant \varepsilon_{11}(m,h)+\varepsilon(h). \end{equation*} \notag
Using (5.26) and taking the limit in the last inequality, first as m\to\infty and then as h\to\infty, we establish the relation
\begin{equation*} \lim_{m\to \infty}\int_{\mathfrak{B}_R}q^m(x) \,d\nu=0, \end{equation*} \notag
where positive R and k can be arbitrary.

By Lemma 7 for w^j=T_{k}(u^j) and w=T_{k}(u), taking (5.12) into account we have (5.17). In view of (3.18),

\begin{equation} dT_k(u^m)\to dT_k(u) \quad \text{$\nu$-a.e. in } \mathbb{H}^n, \qquad m\to\infty. \end{equation} \tag{5.37}

To prove (2.21) consider the test function {v = T_k(u^m-\xi)} in (4.23), where \xi\in C_0^1(\mathbb{H}^n); then we obtain

\begin{equation} \begin{aligned} \, \nonumber &\int_{\mathbb{H}^n} \bigl(a(x,T_m(u^m),du^m),dT_k(u^m-\xi)\bigr)\,d\nu \\ \nonumber &\qquad\qquad +\int_{\mathbb{H}^n} \bigl(b_0^m(x,u^m)-f^m\bigr)T_k(u^m-\xi)\,d\nu +\int_{\mathbb{H}^n} b_1^m(x,u^m)T_k(u^m-\xi)\,d\mu \\ &\qquad=I^m+J^m=0. \end{aligned} \end{equation} \tag{5.38}

Set \mathbf{M}=k+\|\xi\|_{\infty}. If |u^m|\geqslant \mathbf{M}, then |u^m-\xi|\geqslant |u^m|-\|\xi\|_{\infty}\geqslant k, and therefore \{\mathbb{H}^n\colon |u^m-\xi|< k\}\subseteq \{\mathbb{H}^n\colon |u^m|< \mathbf{M}\}. Hence

\begin{equation} \begin{aligned} \, I^m &=\int_{\mathbb{H}^n} \bigl(a(x,T_m(u^m),du^m),dT_k(u^m-\xi)\bigr)\,d\nu \nonumber \\ &=\int_{\mathbb{H}^n} \bigl(a(x,T_{\mathbf{M}}(u^m),d T_{\mathbf{M}}(u^m)),dT_k(u^m-\xi)\bigr)\,d\nu \nonumber \\ &=\int_{\mathbb{H}^n} \bigl(a(x,T_{\mathbf{M}}(u^m),dT_{\mathbf{M}}(u^m)),dT_{\mathbf{M}}(u^m)\,{-}\,d\xi\bigr) \chi_{\{\mathbb{H}^n\colon |u^m-\xi|<k\}}\,d\nu, \quad m\geqslant \mathbf{M}. \end{aligned} \end{equation} \tag{5.39}

Let w^m=u^m-\xi and w=u-\xi. Since on the set where |w^m|\to k as m\to\infty we have |w|= k, it follows that d w=0. Therefore,

\begin{equation} \begin{aligned} \, &dT_k(w^m)-dT_k(w) =\chi_{\{\mathbb{H}^n\colon |w^m|<k\}}(dw^m-d w) \nonumber \\ &\qquad +\bigl(\chi_{\{\mathbb{H}^n\colon |w^m|<k\}}-\chi_{\{\mathbb{H}^n\colon |w|<k\}}\bigr)\,dw\to 0 \quad \text{$\nu$-a.e. in } \mathbb{H}^n, \qquad m\to\infty. \end{aligned} \end{equation} \tag{5.40}
Using inequality (2.9) and conditions (2.15) and (2.16) for \varepsilon\in (0,1) we find that
\begin{equation*} \begin{aligned} \, &\bigl(a(x,T_{\mathbf{M}}(u^m),dT_{\mathbf{M}}(u^m)), dT_{\mathbf{M}}(u^m)-d\xi\bigr)\chi_{\{\mathbb{H}^n\colon |u^m-\xi|< k\}} \\ &\qquad \geqslant(c_0-\varepsilon \operatorname{g}(\mathbf{M}))M(x,|dT_{\mathbf{M}}(u^m)|_g)-C_1 G(x)-M(x,\varepsilon^{-1} |d\xi|_g). \end{aligned} \end{equation*} \notag
Taking \varepsilon<c_0/\operatorname{g}(\mathbf{M}) we obtain the inequality
\begin{equation*} \begin{aligned} \, &\bigl(a(x,T_{\mathbf{M}}(u^m),dT_{\mathbf{M}}(u^m)),d( T_M(u^m)-\xi)\bigr)\chi_{\{\mathbb{H}^n\colon |u^m-\xi|<k\}} \\ &\qquad \geqslant -C_{10}(G(x)+M (x,|d\xi|_g))\in L_1(\mathbb{H}^n). \end{aligned} \end{equation*} \notag
From (5.40), (5.12) and (5.37), since a(x,r,y) is continuous in (r,y), by Fatou’s lemma we obtain
\begin{equation} \begin{aligned} \, \lim_{m\to \infty}\inf I^m &\geqslant \int_{\mathbb{H}^n}\bigl(a(x,T_{\mathbf{M}}(u),dT_{\mathbf{M}}(u)),dT_k(u-\xi)\bigr)\,d\nu \nonumber \\ &=\int_{\mathbb{H}^n}\bigl(a(x,u,du),dT_k( u-\xi)\bigr)\,d\nu\geqslant C_I. \end{aligned} \end{equation} \tag{5.41}

By (5.11), using Lemma 8 we have

\begin{equation} T_k(u^m-\xi)\stackrel {*}\rightharpoonup T_k(u-\xi) \quad \text{in } L_{\infty}(\mathbb{H}^n), \qquad m\to \infty. \end{equation} \tag{5.42}

We split the integral J^m into two. The first term

\begin{equation*} J^m_1=\int_{\mathbb{H}^n}b_0^m(x,u^m)T_k(u^m-\xi)\,d\nu+ \int_{\mathbb{H}^n}b_1^m(x,u^m)T_k(u^m-\xi)\,d\mu \end{equation*} \notag
can be estimated as follows. Using (4.20) and (5.42) and taking the limit as m\to\infty we see that
\begin{equation} J^m_2= \int_{\Omega}f^m T_k(u^m-\xi)\,dx\to \int_{\Omega}f T_k(u-\xi)\,dx=C_{J_2}. \end{equation} \tag{5.43}
Now from (5.38) we obtain
\begin{equation*} C_I+\liminf_{m\to \infty} J_1^m\leqslant C_{J_2}. \end{equation*} \notag

Let \operatorname{supp}\xi\subset \mathfrak{B}_{l_0}, l\geqslant l_0, \mathfrak{B}_{l,s}^m=\{x\in\mathfrak{B}_{l}\colon \ |u^m(x)|< s\}, s\geqslant \mathbf{M} and \mathfrak{B}_{l,s}=\{x\in\mathfrak{B}_{l}\colon \ |u(x)|< s\}. We choose s so that \operatorname{meas} \{x\in\mathfrak{B}_{l}\colon \ |u(x)|= s\}=0. Then taking (4.19) and the inequality u^m(x)T_k(u^m-\xi)\geqslant0 for |u^m(x)|>\mathbf{M} into account we see that

\begin{equation*} \begin{aligned} \, J^m_1 &=\int_{\mathbb{H}^n\backslash \mathfrak{B}_{l,s}^m}b_0^m(x,u^m)T_k(w^m)\,d\nu+\int_{\mathbb{H}^n\backslash \mathfrak{B}_{l,s}^m}b_1^m(x,u^m)T_k(w^m)\,d\mu \\ &\qquad +\int_{\mathfrak{B}_{l,s}^m}b_0^m(x,u^m)T_k(w^m)\,d\nu+ \int_{\mathfrak{B}_{l,s}^m}b_1^m(x,u^m)T_k(w^m)\,d\mu \\ &\geqslant\int_{\mathfrak{B}_{l,s}^m}b_0^m(x,T_s(u^m))T_k(w^m)\,d\nu+ \int_{\mathfrak{B}_{l,s}^m}b_1^m(x,T_s(u^m))T_k(w^m)\,d\mu= \overline{J}^{\,lm}_1. \end{aligned} \end{equation*} \notag
Recalling (5.14), (5.15) and (5.42) and taking the limit as m\to \infty we obtain
\begin{equation*} \begin{aligned} \, &\int_{\mathfrak{B}_{l,s}}b_1(x,T_s(u))T_k(u-\xi)\,d\mu +\int_{\mathfrak{B}_{l,s}}b_0(x,T_s(u))T_k(u-\xi)\,d\nu \\ &\qquad= \lim_{m\to \infty}\overline{J}^{\,lm}_1\leqslant \liminf_{m\to \infty} J_1^m. \end{aligned} \end{equation*} \notag

Since by (2.19) we have

\begin{equation*} \int_{\mathfrak{B}_{l,s}\setminus \mathfrak{B}_{l_0,s}}b_0(x,T_s(u))T_k(u-\xi)\,d\nu= \int_{\mathfrak{B}_{l,s}\setminus \mathfrak{B}_{l_0,s}}|b_0(x,T_s(u))T_k(u)|\,d\nu, \end{equation*} \notag
Beppo Levi’s theorem shows that we can take the limit as l\to \infty. Setting \mathbb{H}_{s}=\{x\in\mathbb{H}^n\colon \ |u(x)|< s\} and taking the limit as l\to \infty we obtain
\begin{equation*} \int_{\mathbb{H}_{s}}b_1(x,u)T_k(u-\xi)\,d\mu +\int_{\mathbb{H}_{s}}b_0(x,u)T_k(u-\xi)\,d\nu\leqslant \liminf_{m\to \infty} J_1^m. \end{equation*} \notag
Since
\begin{equation*} \int_{\mathbb{H}_{s}\setminus\mathbb{H}_{M}}b_1(x,u)T_k(u-\xi)\,d\mu= \int_{\mathbb{H}_{s}\setminus\mathbb{H}_{M}}|b_1(x,u)T_k(u-\xi)|\,d\mu \end{equation*} \notag
by (2.19), we can take the limit as s\to \infty. As a result,
\begin{equation} \int_{\mathbb{H}^n}b_1(x,u)T_k(u-\xi)\,d\mu +\int_{\mathbb{H}^n}b_0(x,u)T_k(u-\xi)\,d\nu\leqslant \liminf_{m\to \infty} J_1^m. \end{equation} \tag{5.44}

Combining (5.38), (5.41), (5.44) and (5.43) we deduce (2.21).

Theorem 1 is proved.


Bibliography

1. Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, “An L^1-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273  mathscinet  zmath
2. N. Saintier and L. Véron, “Nonlinear elliptic equations with measure valued absorption potential”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22:1 (2021), 351–397  crossref  mathscinet  zmath
3. V. F. Vil'danova and F. Kh. Mukminov, “Perturbations of nonlinear elliptic operators by potentials in the space of multiplicators”, J. Math. Sci. (N.Y.), 257:5 (2021), 569–578  crossref  mathscinet  zmath
4. S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holder, Solvable models in quantum mechanics, With an appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005, xiv+488 pp.  crossref  mathscinet  zmath
5. M. I. Neiman-zade and A. A. Shkalikov, “Schrödinger operators with singular potentials from the space of multiplicators”, Math. Notes, 66:5 (1999), 599–607  mathnet  crossref  mathscinet  zmath
6. A. Malusa and M. M. Porzio, “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389  crossref  mathscinet  zmath
7. L. M. Kozhevnikova, “On solutions of elliptic equations with variable exponents and measure data in \mathbb R^n”, Differential equations on manifolds and mathematical physics, Dedicated to the memory of B. Sternin, Trends Math., Birkhäuser/Springer, Cham, 2021, 221–239  crossref  mathscinet  zmath
8. L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367  crossref  mathscinet  zmath
9. A. P. Kashnikova and L. M. Kozhevnikova, “Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces”, Sb. Math., 213:4 (2022), 476–511  mathnet  crossref  mathscinet  zmath  adsnasa
10. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp.  crossref  mathscinet  zmath
11. P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Math., 2236, Springer, Cham, 2019, x+167 pp.  crossref  mathscinet  zmath
12. T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren Math. Wiss., 252, Springer-Verlag, New York, 1982, xii+204 pp.  crossref  mathscinet  zmath
13. M. B. Benboubker, E. Azroul and A. Barbara, “Quasilinear elliptic problems with nonstandard growth”, Electron. J. Differential Equations, 2011, 62, 16 pp.  mathscinet  zmath
14. G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double non-linearity”, Sb. Math., 188:9 (1997), 1343–1370  mathnet  crossref  mathscinet  zmath  adsnasa
15. N. Dunford and J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp.  mathscinet  zmath
16. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp.  mathscinet  zmath

Citation: V. F. Vil'danova, F. Kh. Mukminov, “Entropy solution for an equation with measure-valued potential in a hyperbolic space”, Sb. Math., 214:11 (2023), 1534–1559
Citation in format AMSBIB
\Bibitem{VilMuk23}
\by V.~F.~Vil'danova, F.~Kh.~Mukminov
\paper Entropy solution for an equation with measure-valued potential in a~hyperbolic space
\jour Sb. Math.
\yr 2023
\vol 214
\issue 11
\pages 1534--1559
\mathnet{http://mi.mathnet.ru/eng/sm9875}
\crossref{https://doi.org/10.4213/sm9875e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4720894}
\zmath{https://zbmath.org/?q=an:1540.35210}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023SbMat.214.1534V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001191951300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85188525946}
Linking options:
  • https://www.mathnet.ru/eng/sm9875
  • https://doi.org/10.4213/sm9875e
  • https://www.mathnet.ru/eng/sm/v214/i11/p37
  • This publication is cited in the following 7 articles:
    1. L. M. Kozhevnikova, “Suschestvovanie renormalizovannogo resheniya nelineinogo ellipticheskogo uravneniya s $L_1$-dannymi v prostranstve $\mathbb{R}^n$”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 278–299  mathnet  crossref
    2. L. M. Kozhevnikova, “Existence of a Renormalized Solution of a Quasilinear Elliptic Equation without the Sign Condition on the Lower-Order Term”, Diff Equat, 60:6 (2024), 729  crossref
    3. L. M Kozhevnikova, “EXISTENCE OF A RENORMALIZED SOLUTION OF A QUASI-LINEAR ELLIPTIC EQUATION WITHOUT THE SIGN CONDITION ON THE LOWEST TERM”, Differencialʹnye uravneniâ, 60:6 (2024), 764  crossref
    4. F. Kh. Mukminov, O. S. Stekhun, “Existence and uniqueness of solutions to outer Zaremba problem for elliptic equations with measure–valued potential”, Ufa Math. J., 16:4 (2024), 53–75  mathnet  crossref
    5. L. M. Kozhevnikova, “Existence of a Renormalized Solution to a Nonlinear Elliptic Equation with L1-Data in the Space ℝn”, J Math Sci, 2024  crossref
    6. V. F Vildanova, “UNIQUENESS OF THE ENTROPY SOLUTION TO THE DIRICHLET PROBLEM FOR AN ELLIPTIC EQUATION WITH A MEASURE-VALUED POTENTIAL IN A HYPERBOLIC SPACE”, Differencialʹnye uravneniâ, 60:12 (2024), 1653  crossref
    7. V. F. Vildanova, “Uniqueness of the Entropy Solution of the Dirichlet Problem for an Elliptic Equation with a Measure-Valued Potential in a Hyperbolic Space”, Diff Equat, 60:12 (2024), 1708  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:398
    Russian version PDF:30
    English version PDF:83
    Russian version HTML:151
    English version HTML:136
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025