|
Symmetric matrices and maximal Nijenhuis pencils
A. Yu. Konyaevab a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Abstract:
A Nijenhuis pencil is a linear subspace of the space of $(1,1)$ tensor field which consists of Nijenhuis operators. The problem of the description of maximal (by inclusion) Nijenhuis pencils containing a subpencil of dimension $n(n+1)/2$ such that the operators in it are — in some system of coordinates — constant symmetric matrices, is solved. Two such pencils turn out to exist, both of which arise in a natural way in applications, for example, in the theory of infinite-dimensional integrable systems.
Bibliography: 6 titles.
Keywords:
geometry, Frölicher-Nijenhuis bracket, Nijenhuis pencils.
Received: 25.11.2022 and 11.05.2023
§ 1. Introduction The Frölicher-Nijenhuis brackets of two tensor fields of type $(1, 1)$ (operator fields) $L$ and $R$ on a manifold $\mathrm M^n$ is by definition the expression
$$
\begin{equation}
\begin{aligned} \, \notag [[L, R]](\xi, \eta) &=L [\xi, R\eta]+R[L\xi, \eta]+R [\xi, L\eta]+L[R\xi, \eta] \\ &\qquad - [L\xi, R\eta]-[R\xi, L\eta]-LR[\xi, \eta]-RL[\xi, \eta]. \end{aligned}
\end{equation}
\tag{1.1}
$$
Here $\xi$ and $\eta$ are arbitrary vector fields and $[\,\cdot\,{,}\,\cdot\,]$ denotes the standard commutator of vector fields. We can show that the expression (1.1) defines a $(1, 2)$ tensor which is skew-symmetric with respect to the lower indices. An operator field $L$ is called a Nijenhuis operator if its Nijenhuis torsion, defined by $\mathcal N_L=\frac{1}{2} [[L, L]]$, is zero. Nijenhuis operators arise in various problems in physics, geometry and algebra (for instance, see [1]–[3]). In the case of finite-dimensional integrable systems they play the role of recursion operators. In infinite-dimensional integrable systems, if a pair of contravariant flat metrics $g$, $\overline g$ defines compatible Hamiltonian operators of Dubrovin-Novikov type, then $L=\overline g g^{-1}$ is a Nijenhuis operator (see [4]). In applications Nijenhuis operators often arise as families. We call a subspace $\mathcal P$ of the infinite-dimensional linear space of $(1, 1)$ tensor fields on a manifold a Nijenhuis pencil if $[[L, R]]=0$ for all $L, R \in \mathcal P$. By definition, the centralizer of a Nijenhuis pencil $\mathcal P$ is the linear space of (not necessarily Nijenhuis!) operator fields $L$ such that $[[L, R]]=0$ for all $R \in \mathcal P$. We denote it by $C (\mathcal P)$. Pencils can be finite- and infinite-dimensional. The above definition is equivalent to the condition that the linear space $\mathcal P$ consists of Nijenhuis operators. The simplest example of an infinite-dimensional pencil associated with a Nijenhuis operator $L$ is the linear space spanned by $\operatorname{Id}, L, L^2, L^3, \dots$ . It is well known that any combination of powers of a Nijenhuis operator with constant coefficients is also a Nijenhuis operator. Any subspace of a Nijenhuis pencil is obviously a Nijenhuis pencil again. Thus, it makes sense to introduce the notion of a maximal Nijenhuis pencil. We say that a Nijenhuis pencil $\mathcal P$ is maximal if it is not a subpencil of a larger pencil. In other words, any Nijenhuis operator $L$ such that $[[L, R]]=0$ for all $R \in \mathcal P$ must lie in $\mathcal P$. It is easy to see that if the Nijenhuis operator $L$ can be reduced to the diagonal form $\operatorname{diag}\{u^1, \dots, u^n\}$, then the pencil spanned by its powers is maximal. The following Nijenhuis pencil arises in the description of compatible Poisson structures of hydrodynamic type. Fix coordinates $u^1, \dots, u^n$ on $\mathrm M^n= \mathbb R^n$ and consider all operator fields $L$ of the form
$$
\begin{equation}
l^i_j=a^i_j+c^i u^j+u^i c^j-K u^i u^j,
\end{equation}
\tag{1.2}
$$
where $a^i_j=a^j_i$ and $K, c^1, \dots, c^n$ are arbitrary constants. Such operator fields turn out to be Nijenhuis operators; they form a pencil. We denote it by $\mathcal P_1$. Note that in the finite-dimensional case operators of the form (1.2) for $K \neq 0$ are connected with elliptic coordinates and separation of variables (for instance, see [5]). It has been claimed (see Corollary 5.1 in [4]) that for $n > 2$ the pencil $\mathcal P_1$ is maximal and has dimension $(n+1)(n+2)/2$. In particular, this is the unique pencil satisfying the following three conditions. We see that Nijenhuis pencils arise at the crossroads of different areas of mathematics, so a description of maximal (in particular, finite-dimensional) Nijenhuis pencils is of considerable interest. In the fixed coordinates consider an arbitrary — not necessarily symmetric — constant matrix $A$ with entries $a^i_j$ and fix $n$ constants $c^1, \dots, c^n$. Consider operators $L$ whose matrices in these particular coordinates have the form
$$
\begin{equation}
l^i_j=a^i_j+u^i c^j.
\end{equation}
\tag{1.3}
$$
These operators form a linear space of dimension $n^2+n$. The following result holds. Theorem 1. All operator fields defined by matrices of the form (1.3) in a fixed system of coordinates form a maximal Nijenhuis pencil. We denote this pencil by $\mathcal P_2$. It elements arise in applications in a natural way. Let $A$ in (1.3) be a Jordan block of maximum size with eigenvalue zero. Then for ${c^1=1}$ and $c^2=\dots=c^n=0$ we obtain an operator of the form
$$
\begin{equation*}
L=\begin{pmatrix} u^1 & 1 & 0 & \dots & 0 & 0\\ u^2 & 0 & 1 & \dots & 0 & 0\\ & & & \ddots & & \\ u^{n-2} & 0 & 0 & \dots & 1 & 0\\ u^{n-1} & 0 & 0 & \dots & 0 & 1\\ u^{n} & 0 & 0 & \dots & 0 & 0 \end{pmatrix}.
\end{equation*}
\notag
$$
This is the so-called canonical form of a differentially nondegenerate Nijenhuis operator. Let $\mathcal S$ denote the Nijenhuis pencil of operators whose matrices are constant and symmetric in the system of coordinates under consideration. Theorem 2. Any maximal Nijenhuis pencil containing $\mathcal S$ coincides with $\mathcal P_1$ or $\mathcal P_2$. Note a fairly unexpected phenomenon: given a fixed system of coordinate, taking all operators whose matrices are constant in these coordinates we obtain of course a Nijenhuis pencil. However, as we see from Theorem 1, this pencil is not maximal.
§ 2. Proof of Theorem 1 Consider the operator field with entries $b^i_j=u^i c^j$. Then we have
$$
\begin{equation*}
\begin{aligned} \, \frac{1}{2}[[B, B]](\partial_{u^i}, \partial_{u^j}) &=B [B \partial_{u^i}, \partial_{u^j}]+B [\partial_{u^i}, B\partial_{u^j}]- [B \partial_{u^i}, B\partial_{u^j}] \\ & =B[c^i u^{\alpha} \partial_{u^\alpha}, \partial_{u^j}]+B [\partial_{u^i}, c^j u^{\alpha} \partial_{u^{\alpha}}]-[c^i u^{\alpha} \partial_{u^\alpha}, c^j u^{\alpha} \partial_{u^{\alpha}}] \\ & =- c^i c^j u^{\alpha}\partial_{u^{\alpha}}+c^i c^j u^{\alpha}\partial_{u^{\alpha}}=0. \end{aligned}
\end{equation*}
\notag
$$
That is, $B$ is a Nijenhuis operator. Consider an operator field $A$ which has a constant matrix $a^i_j$ in this system of coordinates. Then for $i \neq j$ we obtain
$$
\begin{equation*}
\begin{aligned} \, & [[A, B]] (\partial_{u^i}, \partial_{u^j}) =A[B\partial_{u^i}, \partial_{u^j}]+A[\partial_{u^i}, B \partial_{u^j}]-[A\partial_{u^i}, B\partial_{u^j}]- [B\partial_{u^i}, A\partial_{u^j}] \\ &\qquad =A [c^i u^{\alpha} \partial_{u^\alpha}, \partial_{u^j}]+ A[\partial_{u^i}, c^j u^{\alpha} \partial_{u^\alpha}]-[a_i^{\alpha} \partial_{u^\alpha}, c^j u^{\alpha} \partial_{u^\alpha}]-[c^i u^{\alpha} \partial_{u^\alpha}, a_j^{\beta} \partial_{u^\beta}] \\ &\qquad =- c^i a_j^{\alpha} \partial_{u^\alpha}+c^j a_i^{\alpha} \partial_{u^\alpha}-c^j a_i^{\alpha} \partial_{u^\alpha}+c^i a_j^{\alpha} \partial_{u^\alpha}=0. \end{aligned}
\end{equation*}
\notag
$$
As $[[A, A]]=0$, the condition that $A+B$ is a Nijenhuis operator has the form
$$
\begin{equation*}
[[A+B, A+B]]=2[[A, B]]+[[B, B]]=0.
\end{equation*}
\notag
$$
Thus, the linear space $\mathcal P_2$ consists indeed of Nijenhuis operators. Applying the same equality to $L, M \in \mathcal P_2$ we obtain $[[L, M]]=0$, so that $\mathcal P_2$ is a Nijenhuis pencil. Let $\mathcal M$ denote the linear space of operators whose matrices are constant in the system of coordinates under consideration. This is clearly a Nijenhuis pencil. Now we describe its centralizer $C(\mathcal M)$. Fix $i$ and $j$ and consider $A=\partial_{u^i} \otimes \mathrm{d} u^j$. By definition
$$
\begin{equation*}
A \partial_{u^k}=\partial_{u^i} \delta^k_j.
\end{equation*}
\notag
$$
For an arbitrary operator field $R$ with matrix components $r^i_j$ we have
$$
\begin{equation*}
\begin{aligned} \, & [[A, R]](\partial_{u^k}, \partial_{u^s}) =A[r^{\alpha}_k \partial_{u^{\alpha}}, \partial_{u^s}]+ A[\partial_{u^k}, r^{\alpha}_s\partial_{u^{\alpha}}]-\delta^k_j [\partial_{u^i}, r^{\alpha}_s \partial_{u^\alpha}]-\delta^s_j [r^{\alpha}_k \partial_{u^\alpha}, \partial_{u^i}] \\ &\qquad =\frac{\partial r^j_s}{\partial u^k} \partial_{u^i}-\frac{\partial r^j_k}{\partial u^s} \partial_{u^i}-\delta^k_j \frac{\partial r^{\alpha}_s}{\partial u^i} \partial_{u^\alpha}+\delta^s_j \frac{\partial r^{\alpha}_k}{\partial u^i} \partial_{u^\alpha}. \end{aligned}
\end{equation*}
\notag
$$
Plugging in $j=k$ we let $R \in C(\mathcal M)$. In this case
$$
\begin{equation}
0=\biggl( \frac{\partial r^j_s}{\partial u^j}-\frac{\partial r^j_j}{\partial u^s}-\frac{\partial r^i_s}{\partial u^i}\biggr)\partial_{u^i}+\sum_{\alpha \neq i} \frac{\partial r^{\alpha}_s}{\partial u^i} \partial_{u^\alpha}.
\end{equation}
\tag{2.1}
$$
In particular, for each $s$ the component $r^\alpha_s$ is independent of $u^i$ for $\alpha \neq i$. In other words, the row with index $\alpha$ of $R$ depends only on $u^\alpha$. Since $k \neq s$, the expression in brackets in (2.1) assumes the form
$$
\begin{equation*}
\frac{\partial r^j_s}{\partial u^j}-\frac{\partial r^i_s}{\partial u^i}=0.
\end{equation*}
\notag
$$
Since $r^j_s$ depends only on $u^j$ and $r^i_s$ depends only on $u^i$, this equality means that both derivatives are constants. In addition, for different entries in the same column we obtain the same constant. Denoting these constants by $c^i$ we obtain precisely (1.3). Thus we have shown that $\mathcal P_2=C(\mathcal M)$. As this is a Nijenhuis pencil, we see that it is maximal. The proof is complete.
§ 3. Proof of Theorem 2 We begin with several lemmas. Lemma 1. For operator fields $B$ and $C$ with matrices $b^i_j=b^i u^j+u^i b^j$ and $C^i_j=u^i u^j$ the following relations hold:
$$
\begin{equation}
[[B, B]]=0, \qquad [[B, C]]=0\quad\textit{and} \quad [[C, C]]=0.
\end{equation}
\tag{3.1}
$$
Proof. Consider the operator $L$ of the form (1.2). Note that it is selfadjoint with respect to a symmetric nondegenerate flat metric $\delta_{ij}$. Raising the indices of the operator we obtain the contravariant differential form
$$
\begin{equation*}
l^{ij}=a^{ij}+b^i u^j+u^i b^j-K u^i u^j.
\end{equation*}
\notag
$$
The fixed coordinates are flat for $\delta_{ij}$, that is, $\nabla_k=\partial_{u^k}$. We have the equality
$$
\begin{equation*}
\nabla_k l^{ij} =\partial_{u^k} l^{ij}=b^i \delta^j_k+\delta^i_k b^j-K \delta^i_k u^j-K u^i \delta^j_k =(b^i-K u^i) \delta^j_k+\delta^i_k (b^j-K u^j).
\end{equation*}
\notag
$$
Note that $\operatorname{tr} L=\sum_{p=1}^n (2 b^p u^p-K(u^p)^2)$ and
$$
\begin{equation*}
\frac{1}{2} \delta^{i\alpha}\mathrm{d}_\alpha \operatorname{tr} L=b^i-K u^i.
\end{equation*}
\notag
$$
Thus, the operator $L$ satisfies the condition of geodesic compatibility with the metric $\delta_{ij}$ (see [4], formula 13). If $l^{ij}$ is nondegenerate in a neighbourhood of the origin, then the contravariant metrics $\delta^{ij}$ and $l^{ij}$ are compatible in the sense of Poisson (see [4], Theorem 1). Hence $L$ is a Nijenhuis operator (for example, see [6]).
The contravariant metric $l^{ij}$ is nondegenerate in a neighbourhood of the origin for almost all values of the parameters $a^i_j$, $b^i$ and $K$. Hence $L$ is a Nijenhuis operator for almost all values of these parameters and, by continuity, for all of their values. Then we obtain
$$
\begin{equation*}
\begin{aligned} \, 0 &=[[A+B+C, A+B+C]] \\ &=2\underbrace{[[A, B]]}_{\text{degree 0}}+2\underbrace{[[A, C]]}_{\text{degree 1}}+2\underbrace{[[B, C]]}_{\text{degree 2}}+ \underbrace{[[B, B]]}_{\text{degree 1}}+\underbrace{[[C, C]]}_{\text{degree 3}}. \end{aligned}
\end{equation*}
\notag
$$
The components of the tensor field corresponding to each term are homogeneous polynomials of degree indicated below it. Since their sum is zero, we immediately obtain $[[C, C]]=[[B, C]]=0$. Taking the zero matrix as $A$ we obtain $[[B, B]] = 0$. The proof is complete. Lemma 2. Consider two operator fields $A$ and $B$ with matrices $a^i_j=b^i u^j+c^j u^i$ and $b^i_j=u^i u^j$. Then $[[A, B]]=0$ if and only if $b^i=c^i$ for all $i$. Proof. First we express $A^i_j=(b^i-c^i) u^j+c^j u^i+c^i u^j$ and set $C^i_j=p^i u^j$, where $p^i=b^i-c^i$. By Lemma 1 $[[A, B]]=[[C, B]]$. For $i \neq j$ this yields the following relations (summation in parentheses is performed only over the $\alpha$ !):
$$
\begin{equation*}
\begin{aligned} \, & [[C, B]](\partial_{u^i}, \partial_{u^j})=C[B\partial_{u^i}, \partial_{u^j}]+C[\partial_{u^i}, B\partial_{u^j}]+ B[C\partial_{u^i}, \partial_{u^j}]+B[\partial_{u^i}, C\partial_{u^j}] \\ &\quad -[C\partial_{u^i}, B\partial_{u^j}]-[B\partial_{u^i}, C\partial_{u^j}]=C[u^i u^{\alpha} \partial_{u^{\alpha}}, \partial_{u^j}]+C[\partial_{u^i}, u^j u^{\alpha} \partial_{u^{\alpha}}] \\ &\quad +B[u^i p^{\alpha} \partial_{u^{\alpha}}, \partial_{u^j}]+ B[\partial_{u^i}, u^j p^{\alpha} \partial_{u^{\alpha}}]-[u^i p^{\alpha}\partial_{u^{\alpha}}, u^j u^{\beta} \partial_{u^{\beta}}]-[u^i u^{\alpha}\partial_{u^{\alpha}}, u^j p^{\beta} \partial_{u^{\beta}}] \\ &=C (u^i \partial_{u^j}-u^j \partial_{u^i})-\delta^i_{\beta} u^j u^{\beta} p^{\alpha} \partial_{u^{\alpha}}+u^i p^{\alpha} \delta^j_{\alpha} u^{\beta} \partial_{u^{\beta}}+u^i p^{\alpha} u^j \delta^{\beta}_{\alpha} \partial_{u^{\beta}} \\ &\quad -u^j p^{\beta} \delta^i_{\beta} u^{\alpha}\partial_{u^{\alpha}}- u^i u^j p^{\beta} \delta^{\alpha}_{\beta} \partial_{u^{\alpha}}+u^i u^{\alpha} \delta^j_{\alpha} p^{\beta} \partial_{u^{\beta}} \\ &=- u^j u^i p^{\alpha} \partial_{u^{\alpha}}+u^i p^j u^{\alpha} \partial_{u^{\alpha}}+u^i u^j p^{\alpha} \partial_{u^{\alpha}}-u^j p^i u^{\alpha} \partial_{u^{\alpha}}-u^i u^j p^{\alpha} \partial_{u^{\alpha}}+u^i u^j p^{\alpha} \partial_{u^{\alpha}} \\ &=(u^i p^j-u^j p^i) u^{\alpha} \partial_{u^{\alpha}}. \end{aligned}
\end{equation*}
\notag
$$
As the Frölicher-Nijenhuis bracket vanishes, all coefficients vanish and, in particular, $p^i=p^j=0$. This completes the proof. Lemma 3. Consider the operator field $A$ with matrix $a^i_j=b^i u^j+u^i c^j$. Then the condition $[[A, A]]=0$ holds (that is, $A$ is a Nijenhuis operator) if and only if at least one of the following conditions holds: 1) $b^i=c^i$; 2) $b^i=0$ for all $i=1, \dots, n$. Proof. For $i \neq j$ we obtain
$$
\begin{equation*}
\begin{aligned} \, 0 &=[[A, A]]=A [A\partial_{u^i}, \partial_{u^j}]+A [\partial_{u^i}, A \partial_{u^j}]-[A\partial_{u^i}, A\partial_{u^j}] \\ &=A[u^i b^{\alpha} \partial_{u^{\alpha}}+c^i u^{\alpha} \partial_{u^{\alpha}}, \partial_{u^j}]+A [\partial_{u^i}, u^j b^{\alpha} \partial_{u^{\alpha}}+c^j u^{\alpha} \partial_{u^{\alpha}}] \\ &\qquad -[u^i b^{\alpha} \partial_{u^{\alpha}}+c^i u^{\alpha} \partial_{u^{\alpha}}, u^j b^{\beta} \partial_{u^{\beta}}+c^j u^{\beta} \partial_{u^{\beta}}] \\ &=c^i (u^j b^{\alpha} \partial_{u^{\alpha}}+c^j u^{\alpha} \partial_{u^{\alpha}})-c^j (u^i b^{\alpha} \partial_{u^{\alpha}}+ c^i u^{\alpha} \partial_{u^{\alpha}}) \\ &\qquad -[u^i b^{\alpha} \partial_{u^{\alpha}}, u^j b^{\beta} \partial_{u^{\beta}}]-[c^i u^{\alpha} \partial_{u^{\alpha}}, u^j b^{\beta} \partial_{u^{\beta}}]-[u^i b^{\alpha} \partial_{u^{\alpha}}, c^j u^{\beta} \partial_{u^{\beta}}] \\ &\qquad -[c^i u^{\alpha} \partial_{u^{\alpha}}, c^j u^{\beta} \partial_{u^{\beta}}]=c^i u^j b^{\alpha} \partial_{u^{\alpha}}-c^j u^i b^{\alpha} \partial_{u^{\alpha}}-b^i b^{\alpha} \partial_{u^{\alpha}}+b^j b^{\alpha} \partial_{u^{\alpha}} \\ &\qquad -c^i u^j b^{\alpha} \partial_{u^{\alpha}}+c^i u^j b^{\alpha} \partial_{u^{\alpha}}-c^j u^i b^{\alpha} \partial_{u^{\alpha}}+c^j u^i b^{\alpha} \partial_{u^{\alpha}}-c^i c^j [u^{\alpha} \partial_{u^{\alpha}}, u^{\beta} \partial_{u^{\beta}}] \\ &=( (c^i-b^i) u^j-(c^j-b^j)u^i) b^{\alpha} \partial_{u^{\alpha}}. \end{aligned}
\end{equation*}
\notag
$$
If $b^i=0$ for $i=1, \dots, n$, then it is obvious that the last formula produces zero. If not all the $b^i$ vanish, then we choose $\alpha=k$ such that $b^k \neq 0$. Then the homogeneous linear polynomial in parentheses vanishes, so that $b^i-c^i=0$ and $b^j-c^j=0$. Since $i$ and $j$ can be arbitrary, the proof is complete. Lemma 4. Consider an operator field $B$ with matrix $b^i_j=u^i u^j$ and a constant operator field $A$ with matrix $a^i_j$. Then they commute with respect to the Frölicher-Nijenhuis bracket if and only if $a^i_j=a^j_i$. Proof. For $i \neq j$ we obtain
$$
\begin{equation*}
\begin{aligned} \, & [[A, B]] (\partial_{u^i}, \partial_{u^j})=A[B\partial_{u^i}, \partial_{u^j}]+A[\partial_{u^i}, B \partial_{u^j}]- [A\partial_{u^i}, B\partial_{u^j}]-[B\partial_{u^i}, A\partial_{u^j}] \\ &\qquad =A[u^i u^{\alpha}\partial_{u^{\alpha}}, \partial_{u^j}]+A [\partial_{u^i}, u^j u^{\alpha} \partial_{u^{\alpha}}]- [A^{\alpha}_i \partial_{u^{\alpha}}, u^j u^{\beta} \partial_{u^{\beta}}]-[u^i u^{\alpha} \partial_{u^{\alpha}}, A^{\beta}_j \partial_{u^{\beta}}] \\ &\qquad =u^i a_j^{\alpha} \partial_{u^{\alpha}}-u^j a^{\alpha}_i \partial_{u^{\alpha}}+a^j_i u^{\alpha} \partial_{u^{\alpha}}+u^j a_i^{\alpha} \partial_{u^{\alpha}}-a^i_j u^{\alpha} \partial_{u^{\alpha}}-u^i a^{\alpha}_j \partial_{u^{\alpha}} \\ &\qquad =(a^j_i-a^i_j) u^{\alpha} \partial_{u^{\alpha}}. \end{aligned}
\end{equation*}
\notag
$$
Thus, the Frölicher-Nijenhuis bracket vanishes if and only if $a^i_j=a^j_i$. The proof is complete. Lemma 5. Consider a nontrivial operator field $B$ with matrix $b^i_j=b^i u^j+u^i b^j$ and a constant operator field $A$ with matrix $a^i_j$. Then they commute with respect to the Frölicher-Nijenhuis bracket if and only if $a^i_j=a^j_i$. Proof. For $i \neq j$ we obtain
$$
\begin{equation*}
\begin{aligned} \, & [[A, B]] (\partial_{u^i}, \partial_{u^j})=A[B\partial_{u^i}, \partial_{u^j}]+A[\partial_{u^i}, B \partial_{u^j}]- [A\partial_{u^i}, B\partial_{u^j}]-[B\partial_{u^i}, A\partial_{u^j}] \\ &\qquad =A[u^i b^{\alpha} \partial_{u^{\alpha}}+b^i u^{\alpha} \partial_{u^{\alpha}}, \partial_{u^j}]+A[\partial_{u^i}, u^j b^{\alpha} \partial_{u^{\alpha}}+b^j u^{\alpha}\partial_{u^{\alpha}}] \\ &\qquad\qquad -[a_i^{\alpha} \partial_{u^{\alpha}}, u^j b^{\beta} \partial_{u^{\beta}}+b^j u^{\beta}\partial_{u^{\beta}}]-[u^i b^{\alpha} \partial_{u^{\alpha}}+b^i u^{\alpha} \partial_{u^{\alpha}}, a_j^{\beta} \partial_{u^{\beta}}] \\ &\qquad =b^i a_j^{\alpha} \partial_{u^{\alpha}}-b^j a_i^{\alpha} \partial_{u^{\alpha}}+a^j_i b^{\beta} \partial_{u^{\beta}}+b^j a_i^{\alpha} \partial_{u^{\alpha}}-a^i_j b^{\alpha} \partial_{u^{\alpha}}-b^i a_j^{\alpha} \partial_{u^{\alpha}} \\ &\qquad =(a^j_i-a^i_j)b^{\alpha} \partial_{u^{\alpha}}. \end{aligned}
\end{equation*}
\notag
$$
By assumption there exists $\alpha$ such that $b^{\alpha} \neq 0$. Hence $a^i_j=a^j_i$ in this case. Since $i$ and $j$ can be arbitrary, the proof is complete. Lemma 6. Consider a nontrivial operator field $B$ with matrix $b^i_j= u^i c^j$ and a constant operator field $A$ with matrix $a^i_j$. Then $[[A, B]]= 0$. Proof. For $i \neq j$ we obtain
$$
\begin{equation*}
\begin{aligned} \, &[[A, B]] (\partial_{u^i}, \partial_{u^j})=A[B\partial_{u^i}, \partial_{u^j}]+A[\partial_{u^i}, B \partial_{u^j}]- [A\partial_{u^i}, B\partial_{u^j}]-[B\partial_{u^i}, A\partial_{u^j}] \\ &\qquad =A [c^i u^{\alpha} \partial_{u^{\alpha}}, \partial_{u^j}]+ A[\partial_{u^i}, c^j u^{\alpha} \partial_{u^{\alpha}}]- [a_i^{\alpha} \partial_{u^{\alpha}}, c^j u^{\beta} \partial_{u^{\beta}}]-[c^i u^{\alpha} \partial_{u^{\alpha}}, a_j^{\beta} \partial_{u^{\beta}}] \\ &\qquad =c^i a_j^{\alpha} \partial_{u^{\alpha}}-c^j a_i^{\alpha} \partial_{u^{\alpha}}+c^j a_i^{\beta} \partial_{u^{\beta}}-c^i a_j^{\alpha} \partial_{u^{\alpha}}=0. \end{aligned}
\end{equation*}
\notag
$$
This proves the lemma. Lemma 7. In dimension $n \geqslant 3$ the centralizer $C(\mathcal S)$ consists precisely of the operators with matrices of the form
$$
\begin{equation}
r^i_j=a^i_j+b^i u^j+c^j u^i-K u^i u^j,
\end{equation}
\tag{3.2}
$$
where $a^i_j$, $b^i$, $c^i$ and $K$ are constants. Proof. Let $L \in \mathcal S$ be an operator with diagonal matrix and pairwise distinct diagonal entries $\lambda_i$, $i=1, \dots, n$. Then for a fixed pair $i$, $j$, $i \neq j$, we obtain
$$
\begin{equation*}
\begin{aligned} \, [[R, L]](\partial_{u^i}, \partial_{u^j}) &=L [R\partial_{u^i}, \partial_{u^j}]+L [\partial_{u^i}, R\partial_{u^j}]- [R\partial_{u^i}, L\partial_{u^j}]-[L\partial_{u^i}, R \partial_{u^j}] \\ &=\biggl( \lambda_{\alpha}\, \frac{\partial r^{\alpha}_i}{\partial u^j}-\lambda_{\alpha} \, \frac{\partial r^{\alpha}_j}{\partial u^i}- \lambda_j \, \frac{\partial r^{\alpha}_i}{\partial u^j}+\lambda_i \, \frac{\partial r^{\alpha}_j}{\partial u^i} \biggr) \partial_{u^\alpha}=0. \end{aligned}
\end{equation*}
\notag
$$
Relabelling, we obtain the system
$$
\begin{equation}
(\lambda_{k}-\lambda_j)\, \frac{\partial r^{k}_i}{\partial u^j}- (\lambda_{k}-\lambda_i) \, \frac{\partial r^{k}_j}{\partial u^i}=0.
\end{equation}
\tag{3.3}
$$
Taking $k=i$ we see that $r^i_i$ is independent of $u^j$. Since $j \neq i$ are arbitrary, $r^i_i$ depends only on $u^i$. Taking another set of constants $\overline \lambda_i$, for $k \neq i, j$ we obtain the following system of linear equations:
$$
\begin{equation*}
\begin{aligned} \, & (\lambda_{k}-\lambda_j) \, \frac{\partial r^{k}_i}{\partial u^j}- (\lambda_{k}-\lambda_i) \, \frac{\partial r^{k}_j}{\partial u^i}=0, \\ & (\overline \lambda_{k}-\overline \lambda_j) \, \frac{\partial r^{k}_i}{\partial u^j}-(\overline \lambda_{k}-\overline \lambda_i) \, \frac{\partial r^{k}_j}{\partial u^i}=0. \end{aligned}
\end{equation*}
\notag
$$
For each triple $k$, $i$, $j$ we can select constants $\lambda$ and $\overline \lambda$ so that the matrix of the corresponding system is nonsingular. Hence ${\partial r^k_j}/{\partial u^i}=0$ for $i \neq j, k$. In other words, for $i \neq j$, $r^i_j$ depends on two variables, $u^i$ and $u^j$, at most.
Now fix $i$ and $j$ and consider $L \in \mathcal S$ such that
$$
\begin{equation*}
L \partial_{u^i}=\partial_{u^j}, \qquad L\partial_{u^j}=\partial_{u^i}\quad\text{and} \quad L\partial_{u^k}=0, \quad k \neq i, j.
\end{equation*}
\notag
$$
If $n > 3$, then considering a quadruple of pairwise distinct $i$, $j$, $p$, $q$ we obtain
$$
\begin{equation}
\begin{aligned} \, \notag [[R, L]] (\partial_{u^p}, \partial_{u^q}) &=L[R\partial_{u^p}, \partial_{u^q}]+L[\partial_{u^p}, R\partial_{u^q}] \\ &=\frac{\partial r^i_p}{\partial u^q} \, \partial_{u^j}+\frac{\partial r^j_p}{\partial u^q} \, \partial_{u^i} -\frac{\partial r^i_q}{\partial u^p} \, \partial_{u^j}-\frac{\partial r^j_q}{\partial u^p} \, \partial_{u^i}=0. \end{aligned}
\end{equation}
\tag{3.4}
$$
We see that the result already established ensures the equality to zero: the components $r^i_j$ depend at most on the two variables $u^i$ and $u^j$. Thus, condition (3.4) for quadruples gives us nothing new.
Now assume that $n \geqslant 3$ again. Then for pairwise distinct $i$, $j$ and $k$ we have (summation is only performed with respect to $\alpha$, there is no summation with respect to $i$, $j$ or $k$!):
$$
\begin{equation}
\begin{aligned} \, \notag [[R, L]] (\partial_{u^j}, \partial_{u^k}) &=L[R\partial_{u^j}, \partial_{u^k}]+L[\partial_{u^j}, R \partial_{u^k}]-[L \partial_{u^j}, R \partial_{u^k}] \\ \notag &=\frac{\partial r^i_j}{\partial u^k} \, \partial_{u^j}+\frac{\partial r^j_j}{\partial u^k} \, \partial_{u^i}-\frac{\partial r^i_k}{\partial u^j}\, \partial_{u^j}-\frac{\partial r^j_k}{\partial u^j} \, \partial_{u^i}+\frac{\partial r^{\alpha}_k}{\partial u^i}\, \partial_{u^\alpha} \\ &=\biggl( \frac{\partial r^i_k}{\partial u^i}-\frac{\partial r^j_k}{\partial u^j}\biggr) \partial_{u^i}=0. \end{aligned}
\end{equation}
\tag{3.5}
$$
Here we have used that $r^{\alpha}_i$ depends only on $u^i$ and $u^j$. Differentiating with respect to $u^i$ we obtain
$$
\begin{equation}
\frac{\partial^2 r^i_k}{\partial u^i\, \partial u^i}=0, \qquad i \neq k.
\end{equation}
\tag{3.6}
$$
Now consider the following expression (again, summation is only performed with respect to $\alpha$, rather than with respect to $i$ and $j$!):
$$
\begin{equation*}
\begin{aligned} \, [[R, L]](\partial_{u^i}, \partial_{u^j}) &=L [R\partial_{u^i}, \partial_{u^j}]+L [\partial_{u^i}, R\partial_{u^j}]-[R\partial_{u^i}, L\partial_{u^j}]-[L\partial_{u^i}, R \partial_{u^j}] \\ &=L [R\partial_{u^i}, \partial_{u^j}]+L [\partial_{u^i}, R\partial_{u^j}]-[R\partial_{u^i}, \partial_{u^i}]-[\partial_{u^j}, R \partial_{u^j}] \\ &=\frac{\partial r^i_i}{\partial u^j}\, \partial_{u^j}+\frac{\partial r^j_i}{\partial u^j} \, \partial_{u^i}-\frac{\partial r^i_j}{\partial u^i}\, \partial_{u^j}-\frac{\partial r^j_j}{\partial u^i} \, \partial_{u^i}- \frac{\partial r^{\alpha}_i}{\partial u^i} \, \partial_{u^\alpha}+ \frac{\partial r^{\alpha}_j}{\partial u^j} \, \partial_{u^\alpha} \\ &=\biggl( \frac{\partial r^j_i}{\partial u^j}+\frac{\partial r^i_j}{\partial u^j}-\frac{\partial r^i_i}{\partial u^i}\biggr) \partial_{u^i}-\biggl( \frac{\partial r^i_j}{\partial u^i}+ \frac{\partial r^j_i}{\partial u^i}-\frac{\partial r^j_j}{\partial u^j}\biggr)\partial_{u^j} \\ &\qquad +\sum_{k \neq i, j} \biggl( \frac{\partial r^{k}_j}{\partial u^j}- \frac{\partial r^{k}_i}{\partial u^i}\biggr) \partial_{u^k}=0. \end{aligned}
\end{equation*}
\notag
$$
For a fixed triple of pairwise distinct $i$, $j$ and $k$ we obtain
$$
\begin{equation}
\begin{gathered} \, \frac{\partial r^j_i}{\partial u^j}+\frac{\partial r^i_j}{\partial u^j}-\frac{\partial r^i_i}{\partial u^i}=0, \qquad i \neq j, \\ \frac{\partial r^{k}_j}{\partial u^j}-\frac{\partial r^{k}_i}{\partial u^i}=0, \qquad k \neq i, j. \end{gathered}
\end{equation}
\tag{3.7}
$$
Since $r^i_k$ depends only on $u^i$ and $u^k$, differentiating the second equation in (3.7) with respect to $u^j$ and relabelling $k \to i$, $j \to k$ we obtain
$$
\begin{equation}
\frac{\partial^2 r^i_k}{\partial u^k \,\partial u^k}=0, \qquad i \neq k.
\end{equation}
\tag{3.8}
$$
From (3.6) and (3.8) we see that for $i \neq j$ $r^i_k$ depends quadratically on the variables $u^i$ and $u^j$. Differentiating the first equation in (3.7) with respect to $u^j$ we obtain
$$
\begin{equation*}
\frac{\partial^2 r^i_i}{\partial u^i\, \partial u^j}=0, \qquad i \neq j.
\end{equation*}
\notag
$$
Hence $r^i_i$ depends only on $u^i$, and we can see from (3.7) itself that this dependence is also quadratic. In the general form we can express components of the operator as
$$
\begin{equation*}
r^i_j=a^i_j+b^i_j u^i+c^i_j u^j-K^i_j u^i u^j
\end{equation*}
\notag
$$
(without summation with respect to repeating indices), where $a^i_j$, $b^i_j$, $c^i_j$ and $K^i_j$ are constants. For pairwise distinct $i$, $j$ and $k$ equations (3.7) and (3.5) yield the following relations between coefficients:
$$
\begin{equation*}
b^i_j=b^k_j, \qquad c^i_j=c^k_j, \qquad K^i_j=K^k_j=K^i_k.
\end{equation*}
\notag
$$
Denoting $b^i_j$ and $c^i_j$ by $b^i$ and $c^i$ we see that $R$ has the form (3.2). On the other hand the expressions (3.3)– (3.5) and (3.7) show that each operator with matrix of the form (3.2) in the given coordinates commutes with $\mathcal S$ in the sense of the Frölicher-Nijenhuis brackets. The proof of Lemma 7 is thus complete. Now we go over directly to the proof of Theorem 2. Consider some $R \in C(\mathcal S)$. By Lemma 7 the matrix of $R$ has the form $A+B+C$, where $A$ is a constant matrix, $b^i_j=b^i u^j+u^i c^j$ and $c^i_j=- K u^i u^j$. Consider the condition
$$
\begin{equation}
0=[[R, R]] =\underbrace{2[[A, B]]}_{\text{degree 0}}+ \underbrace{2[[A, C]]+[[B, B]]}_{\text{degree 1}}+ \underbrace{2[[B, C]]}_{\text{degree 2}}+\underbrace{[[C, C]]}_{\text{degree 3}}.
\end{equation}
\tag{3.9}
$$
Similarly to the proof of Lemma 1 the degree indicated under a bracket means the degree of components of the corresponding term. Thus we obtain three cases. The case $B \neq 0$, $C \neq 0$. The expression (3.9) yields $[[B, C]]=0$. By Lemma 2 we obtain $b^i_j=b^i u^j+u^i b^j$. By Lemma 5, $a^i_j=a^j_i$. Thus, $R$ lies in the pencil $\mathcal P_1$. The case $B=0$, $C \neq 0$. The expression (3.9) yields $[[A, C]]=0$. From Lemma 4 we obtain $a^i_j=a^j_i$, so that $R$ lies in $\mathcal P_1$ again. The case $B \neq 0$, $C=0$. Then the expression (3.9) yields $[[B, B]]=0$. By Lemma 3 two situations are possible. If $b^i_j=b^i u^j+u^i b^j$, then by Lemma 5 we have $a^i_j=a^j_i$, and $R$ lies in the pencil $\mathcal P_1$. If $b^i_j=u^i c_j$, then by Lemma 6 the operator lies in $\mathcal P_2$. Now note that $C(\mathcal S)=\mathcal P_1+\mathcal P_2$ and $\mathcal P_1 \cap \mathcal P_2=\mathcal S$ by construction. In addition, the set of Nijenhuis operators in the centralizer is $\mathcal P_1 \cup \mathcal P_2$. Each maximal Nijenhuis pencil $\mathcal P$ lies in $C(\mathcal S)$ by construction, so that, as it is a linear space, it either lies in $\mathcal P_1$ or in $\mathcal P_2$. Since all these pencils are maximal, $\mathcal P$ coincides with one of them.
|
|
|
Bibliography
|
|
|
1. |
A. V. Bolsinov, A. Yu. Konyaev and V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp. |
2. |
A. Yu. Konyaev, “Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators”, Differential Geom. Appl., 74 (2021), 101706, 32 pp. |
3. |
T. Takeuchi, “On the construction of recursion operators for the Kerr-Newman and FRLW metrics”, J. Geom. Symmetry Phys., 37 (2015), 85–96 |
4. |
A. V. Bolsinov, A. Yu. Konyaev and V. S. Matveev, “Applications of Nijenhuis geometry II: maximal pencils of multi-Hamiltonian structures of hydrodynamic type”, Nonlinearity, 34:8 (2021), 5136–5162 |
5. |
F. Magri, “Lenard chains for classical integrable systems”, Theoret. and Math. Phys., 137:3 (2003), 1716–1722 |
6. |
O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937 |
Citation:
A. Yu. Konyaev, “Symmetric matrices and maximal Nijenhuis pencils”, Sb. Math., 214:8 (2023), 1101–1110
Linking options:
https://www.mathnet.ru/eng/sm9862https://doi.org/10.4213/sm9862e https://www.mathnet.ru/eng/sm/v214/i8/p53
|
Statistics & downloads: |
Abstract page: | 371 | Russian version PDF: | 20 | English version PDF: | 46 | Russian version HTML: | 101 | English version HTML: | 118 | References: | 70 | First page: | 12 |
|