Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2023, Volume 214, Issue 7, Pages 919–933
DOI: https://doi.org/10.4213/sm9815e
(Mi sm9815)
 

Karatsuba's divisor problem and related questions

M. R. Gabdullina, S. V. Konyagina, V. V. Iudelevichb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We prove that
px1τ(p1)x(logx)3/2andnx1τ(n2+1)x(logx)1/2,
where τ(n)=dn1 is the number of divisors of n, and the first sum is taken over prime numbers.
Bibliography: 14 titles.
Keywords: divisor function, sums of values of functions, shifted primes and squares.
Funding agency Grant number
Russian Science Foundation 19-11-00001
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-265
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The work of M. R. Gabdullin on the upper bound in Theorem 1.2 was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and supported by the Russian Science Foundation under grant no. 19-11-00001, https://rscf.ru/en/project/19-11-00001/. The work of S. V. Konyagin was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-265). The work of V. V. Iudelevich was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”.
Received: 25.07.2022 and 31.03.2023
Bibliographic databases:
Document Type: Article
MSC: 11N35, 11N45
Language: English
Original paper language: Russian

§ 1. Introduction

In 2004 Karatsuba posed the following problem at his seminar “Analytic number theory and applications”: find the asymptotic behaviour of the sum

Φ(x)=px1τ(p1)
as x, where τ(n)=dn1 is the divisor function and the sum is taken over the prime numbers not exceeding x. This is a natural ‘hybrid’ of the following two classical problems in analytic number theory.

The first (so-called Titchmarsh divisor problem) asks for the asymptotic behaviour of the sum

D(x)=pxτ(p1).
It is well known (see [1]–[4]) that
D(x)ζ(2)ζ(3)ζ(6)x,x,
where ζ(s) denotes the Riemann zeta function. The other problem is to find the asymptotics for the sum
T(x)=nx1τ(n).
This problem was solved by Ramanujan [5], who showed that
T(x)=c0xlogx(1+O(1logx)),
where
c0=1πpp2plogpp1=0.5486.

The sum Φ(x) was studied previously. In the recent work [6] it was shown that

Φ(x)4Kx(logx)3/2+O(xloglogx(logx)5/2),
where
K=1πppp1(plogpp11p1)=0.2532.
Note that the bound Φ(x)x(logx)3/2 follows from Corollary 1.2 in [7] and can also be derived by arguing similarly to the proof of the upper bound in Theorem 1.2 below. We make the conjecture that
Φ(x)Kx(logx)3/2,x,
but this is probably hard to show.

In this paper we prove that the aforementioned upper bound for Φ(x) is sharp up to a constant.

Theorem 1.1. We have

Φ(x)x(logx)3/2.

Thus, we find the correct order of magnitude of the sum Φ(x):

Φ(x)x(logx)3/2,
which answers Karatsuba’s question in the first approximation.

In addition to Φ(x), we consider the sum

F(x)=nx1τ(n2+1)
and establish the following.

Theorem 1.2. We have

F(x)x(logx)1/2.

Now we discuss the main ideas of the proofs. In the sum Φ(x), for each prime number px we write p1 in the form ab, where a consists of the prime factors not exceeding z, and b has only prime factors greater than z; here z=xε for some small fixed ε>0. Now Φ(x) can be rewritten as

Φ(x)=axpa  pz1τ(a)b(x1)/apb  p>zab+1 is prime1τ(b),
and, since τ(b)=Oε(1), we have
Φ(x)εaxε1τ(a)b(x1)/apb  p>xεab+1 is prime1.
Using the Brun-Hooley sieve one can estimate the inner sum from below by a quantity of order
xa(logx)2R(x;a),
where the contribution from R(x;a) to the outer sum is negligible. Combining these estimates, we see that
Φ(x)εx(logx)2axε1aτ(a)εx(logx)3/2,
which gives us the required lower bound. Note that this argument does not yield any upper bound for Φ(x), since the estimation of the contribution of the numbers a>x1ε to (1.2) is actually equivalent to the initial problem.

A lower bound for the sum F(x) is obtained in a similar way. The upper bound for F(x) follows from Theorem 1 in [8]. We also note that the same upper bound can be derived from the inequality τ(n)2ω(n) (here ω(n) denotes the number of distinct prime divisors of n) and a bound for the number of integers nx with a fixed value of ω(n2+1). For completeness, we provide this argument.

We observe that the methods used in this work can also be applied to other functions similar to τ(n). For instance, let τk(n) be the generalized divisor function, τk(n)=n=d1d2dk1; then one can show that

px1τk(p1)kx(logx)1/k2.

§ 2. Notation

By φ(n)=#{kn:(k,n)=1} we denote the Euler totient function, and we use P+(n) and P(n) for the least and greatest prime divisors of the integer n>1, respectively; by convention, P+(1)=0 and P(1)=. We denote by π(x) the number of primes not exceeding x, and π(x;q,a) is the number of primes not exceeding x and belonging to the arithmetic progression a (modq); we also set R(x;q,a)=π(x;q,a)π(x)/φ(q). The notation f(x)g(x), as well as f(x)=O(g(x)), means that |f(x)|Cg(x) for some absolute constant C>0 and all possible values of x. We write f(x)g(x) if f(x)g(x)f(x), and we write f(x)kg(x) if we want to stress that the implied constant depends on k.

Now we recall some notation from the sieve methods. Let A be a finite set of positive integers and P be a finite set of prime numbers. We define P=pPp and S(A,P)=#{aA:(a,P)=1}. Also let Ad=#{aA:a0 (modd)}. We assume that, for all dP,

Ad=Xg(d)+rd,
where g(d) is a multiplicative function such that 0<g(p)<1 for pP and g(p)=0 for pP.

Further, let the set P be divided into disjoint subsets P1,P2,,Pt, and let Pj=pPjp. Finally, let {kj}tr=1 be a sequence of even integers. Then we set

Vj=pPr(1g(p)),Lj=logV1j,E=tj=1eLj(Lj)kj+1(kj+1)!,R=djPjω(dj)kj|rd1dt|andR=tl=1djPjω(dj)kj,jlω(dl)=kl+1|rd1dt|.

§ 3. Auxiliary results

We need the following version of the Brun-Hooley sieve, which is due to Ford and Halberstam [9].

Theorem 3.1. Let assumption (2.1) be met. Then

S(A,P)XpP(1g(p))eE+R
and
S(A,P)XpP(1g(p))(1E)RR.

For a proof, see [9].

Lemma 3.2. Let ax1/40 be an even positive integer, and let

Fa(x)=#{nx1a:an+1 is a prime number and P(n)>x1/40}.
Then for xx0,
Fa(x)c1π(x)φ(a)logxR1,
where c1>0 is an absolute constant and
0R1dx13/40|R(x;ad,1)|.

Remark 3.3. Similar upper bounds without the error term R1 can be obtained by sifting the set

{(an+1)(n+P):nx1a},where P=pzp.

Proof of Lemma 3.2. We apply Theorem 3.1 to the sets
A={nx1a:an+1 is prime}
and P={pz}, where z=x1/40 (the other parameters will be chosen later). Then Fa(x)=S(A,P), and for each dP=pzp we have
Ad=#{kx1ad:adk+1 is prime}=π(x;ad,1)=π(x)φ(ad)+R(x;ad,1).
Now we write a number dP in the form d=d1d2, where (d1,a)=1 and d2 consists only of primes dividing a. Then, since φ(ad2)=ad2pa(11/p)=d2φ(a), we find that
1φ(ad)=1φ(d1)φ(ad2)=1φ(d1)d2φ(a),
hence (2.1) holds for X=π(x)/φ(a), the multiplicative function g defined by
g(p)={1p1if (p,a)=1,1potherwise,
and
rd=R(x;ad,1).
In addition, we have
pP(1g(p))1logx,
with an absolute implied constant.

Now we choose a partition of P and define the numbers {kj}tj=1. Set zj=z21j and

Pj=P(zj+1,zj];
then t is the unique positive integer such that zt+1<2zt. Let kj=b+2(j1), where b2 is even and will be chosen later. We also set
C=p>2(1+1p22p)1.52.
By [10], Theorem 7 (see (3.26) and (3.27) in that paper), for any x>1,
eγlogx(11log2x)<px(11p)<eγlogx(1+12log2x),
where γ is the Euler constant. Hence, for any z2 we have
z<pz2(11p)13;
indeed, this follows from (3.1) for z4 and can be checked manually for 2z<4. Thus,
V1j=zj+1<pzj(1g(p))1Czj+1<pzj(11p)13C5.
Hence Lj=logV1jL=log5 and
E=tj=1eLjLkj+1j(kj+1)!eLtj=1Lb+2j1(b+2j1)!.

Now we estimate R+R. If an integer d corresponds to a summand in R, then d=d1dt, where djPj and ω(dj)kj=b+2(j1). Therefore,

dzk11zkttzb+(b+2)/2+(b+4)/4+=z2b+4.
If a number d corresponds to a summand in R, then we find similarly that dz2b+4z=z2b+5. Since the numbers d corresponding to the sums R and R are distinct and do not exceed z2b+5, we see that
R+Rdz2b+5|rd|.
Now we take b=4. Then 2b+5=13,
E5j=1(log5)2j+3(2j+3)!0.48
and
R+Rdx13/40|R(x;ad,1)|.
The claim follows.

We set

M={a1:an2+1 for some n1}.
It is well known that aM if and only if 4 and p \nmid a for any p \equiv 3\ (\operatorname{mod}4).

Lemma 3.4. Let 2\leqslant a, z\leqslant x^{1/30}, a \in \mathcal{M} and P^{+}(a)\leqslant z. Let

\begin{equation*} W_a(x,z)=\# \biggl\{ n \leqslant x\colon a\mid (n^2 + 1) \textit{ and } P^-\biggl(\frac{n^2+1}{a}\biggr) > z \biggr\}. \end{equation*} \notag
Then
\begin{equation*} W_a(x,z) \asymp \frac{2^{\omega(a)}}{\varphi(a)}\,\frac{x}{\log z} . \end{equation*} \notag

Proof. Setting \mathcal{A}=\{k\colon ak=n^2+1 \text{ for some } n\leqslant x\} and
\begin{equation*} \mathcal{P}= \begin{cases} \{p \leqslant z\colon p\equiv 1\ (\operatorname{mod}4)\} &\text{if $a$ is even}, \\ \{2\}\cup \{p \leqslant z\colon p\equiv 1\ (\operatorname{mod}4)\} &\text{if $a$ is odd}. \end{cases} \end{equation*} \notag
We have W_a(x,z) = S(\mathcal{A}, \mathcal{P}). As before, we write each d dividing P=\prod_{p\in\mathcal{P}}p as d=d_1d_2, where (d_1,a)=1 and d_2 consists only of primes dividing a. Suppose that one of the integers d and a is even. Then by the Chinese remainder theorem and the fact that the congruence x^2+1\equiv0\ (\operatorname{mod}p) has two solutions for p\equiv 1\ (\operatorname{mod}4) and one solution for p=2, we obtain
\begin{equation*} \begin{aligned} \, \mathcal{A}_d &=\#\{n\leqslant x\colon n^2+1 \equiv 0 \ (\operatorname{mod}ad) \} \\ &= \frac{x2^{\omega(ad)-1}}{ad}+O(2^{\omega(ad)}) =\frac{x2^{\omega(a)+\omega(d_1)-1}}{ad_1d_2}+O(2^{\omega(ad)}). \end{aligned} \end{equation*} \notag
If both a and d are odd, then a similar argument shows that
\begin{equation*} \mathcal{A}_d= \frac{x2^{\omega(a)+\omega(d_1)}}{ad_1d_2}+O(2^{\omega(ad)}). \end{equation*} \notag
In both cases we have
\begin{equation*} \mathcal{A}_d=\frac{x2^{\omega(a)+\omega(d_1)-\mathbb I(2\mid ad)}}{ad_1d_2}+O(2^{\omega(ad)}) =\frac{x2^{\omega(a)-\mathbb I(2\mid a)}}{a}\frac{2^{\omega(d_1)-\mathbb I(2\mid d_1)}}{d_1d_2}+O(\tau(ad)), \end{equation*} \notag
where \mathbb I(2\mid l) is equal to one if l is even and to zero otherwise. Thus we see that condition (2.1) holds for X= (x2^{\omega(a)-\mathbb I(2\mid a)})/a, the multiplicative function g defined on the prime numbers in \mathcal{P} by
\begin{equation*} g(p)=\begin{cases} \dfrac{2}{p} &\text{if } p\nmid a, \\ \dfrac{1}{p} &\text{if } p\mid a \end{cases} \end{equation*} \notag
(and also g(2)=1/2 in the case of odd a), and
\begin{equation*} r_d=O(\tau(ad)). \end{equation*} \notag
It is well known that
\begin{equation} \prod _{\substack{p\leqslant x \\ p\equiv 1\, (\operatorname{mod}4)}}\biggl(1-\frac{1}{p} \biggr)\asymp \frac{1}{\sqrt{\log x}} \end{equation} \tag{3.3}
(see [11]). Thus, in both cases in the definition of \mathcal{P} we have
\begin{equation*} \prod_{p \in \mathcal{P}}(1-g(p))\asymp \prod_{p\in \mathcal{P}, \, p>2}\biggl(1-\frac2p\biggr) \prod_{p\mid a,\,p>2}\frac{1-1/p}{1-2/p} \asymp \frac{a}{\varphi(a)\log z} \end{equation*} \notag
for an absolute implied constant.

Now we choose a partition of \mathcal{P} and define the numbers \{k_j\}_{j=1}^t. Again, we set z_j= z^{2^{1-j }} and

\begin{equation*} \mathcal{P}_j=\mathcal{P} \cap (z_{j+1}, z_j], \end{equation*} \notag
where t is the unique positive integer such that z_{t+1} < 2 \leqslant z_t and k_j = b + 2(j-1) for some even b \geqslant 2. Now (3.2) implies that
\begin{equation*} \begin{aligned} \, V_j^{-1} &=\prod_{z_{j+1} < p \leqslant z_j} (1 - g(p))^{-1} \leqslant 2\prod_{z_{j+1}<p\leqslant z_j, \, p\neq2}\biggl(1-\frac2p\biggr)^{-1} \\ &=2\prod_{z_{j+1}<p\leqslant z_j, \, p\neq2}\biggl(1-\frac1p\biggr)^{-2}\frac{(1-1/p)^2}{1-2/p} \leqslant 18C\leqslant 28. \end{aligned} \end{equation*} \notag
Therefore, L_j = \log V_j^{-1}\leqslant L=\log 28 and
\begin{equation*} E=\sum_{j=1}^t \frac{e^{L_j} L_j^{k_j+1}}{(k_j+1)!} \leqslant e^L\sum_{j=1}^t\frac{L^{b+2j-1}}{(b+2j-1)!}. \end{equation*} \notag
Now we take b=10; then E\leqslant 0.43 and 2b+5=25. As in the proof of Lemma 3.2, we obtain
\begin{equation*} R+R' \leqslant \sum_{d \leqslant z^{2b+5}} |r_d|\ll \tau(a)\sum_{d\leqslant z^{25}}\tau(d)\ll x^{1/30}z^{25} \ll x^{26/30}, \end{equation*} \notag
and the main term is at least
\begin{equation*} X\prod_{p\in \mathcal{P}}(1-g(p)) \asymp\frac{x2^{\omega(a)}}{\varphi(a)\log z} \gg\frac{x^{1-1/30}}{\log x}. \end{equation*} \notag
An application of Theorem 3.1 completes the proof.

The next lemma is a special case of a result due to Tenenbaum [12]. For completeness, we provide the proof.

Lemma 3.5. Let R>0 be fixed. Then there exist positive constants A=A(R) and B=B(R) such that, for all 1\leqslant k \leqslant R\log\log x,

\begin{equation*} \#\bigl\{n\leqslant x\colon \omega(n^2+1)=k\bigr\} \leqslant \frac{Ax(\log\log x+B)^{k-1}}{(k-1)!\, \log x}. \end{equation*} \notag

Proof. For m\geqslant 2 and y\geqslant2 we define the ‘y-smooth part’ of m by
\begin{equation*} d(m,y)=\max\bigl\{d\mid m\colon P^+(d)\leqslant y\bigr \}. \end{equation*} \notag
For each n\leqslant x the number n^2+1 can be written as the product ab, where
\begin{equation*} a=a(n)=\max\bigl\{d(n^2+1,y)\colon d(n^2+1,y)\leqslant x^{1/30} \bigr\} \end{equation*} \notag
and b=b(n)=(n^2+1)/a; note that (a,b)=1. Now we set
\begin{equation*} \begin{gathered} \, A_1 =\bigl\{ n\leqslant x\colon a\leqslant x^{1/60},\, P^-(b)>x^{1/60},\, b>1\bigr\}, \\ A_2 =\bigl\{ n\leqslant x\colon a\leqslant x^{1/60},\, P^-(b)\leqslant x^{1/60},\, b>1\bigr\} \end{gathered} \end{equation*} \notag
and
\begin{equation*} A_3 =\bigl\{ n\leqslant x\colon x^{1/60}< a \leqslant x^{1/30},\, b>1 \bigr\}. \end{equation*} \notag
Since the number of integers n\leqslant x for which b(n)=1 does not exceed x^{1/60}, we conclude that
\begin{equation} \#\bigl\{n\leqslant x\colon \omega(n^2+1)=k\bigr\}=N_1+N_2+N_3+O(x^{1/60}), \end{equation} \tag{3.4}
where
\begin{equation*} N_i=\#\bigl\{n\in A_i\colon \omega(n^2+1)=k \bigr\}, \qquad i=1, 2, 3. \end{equation*} \notag

First we estimate N_1. In this case 1\leqslant \omega(b)\leqslant 120; by Lemma 3.4 we have

\begin{equation} \begin{aligned} \, \notag N_1 &\leqslant \sum_{l=k-120}^{k-1}\sum_{\substack{a\leqslant x^{1/60}, \, a\in \mathcal{M} \\ \omega(a)=l }} W_a(x, x^{1/60}) \ll \sum_{l=k-120}^{k-1}\sum_{\substack{a\leqslant x^{1/60}, \, a\in \mathcal{M} \\ \omega(a)=l }}\frac{x2^{\omega(a)}}{\varphi(a)\log x} \\ &\leqslant \frac{x}{\log x}\sum_{l=k-120}^{k-1}2^l\sum_{\substack{a\leqslant x^{1/60}, \, a\in \mathcal{M} \\ \omega(a)=l }}\frac{1}{\varphi(a)}. \end{aligned} \end{equation} \tag{3.5}
Taking the logarithm of both sides of (3.3) we obtain
\begin{equation*} \sum _{\substack{p\leqslant x \\ p\equiv 1\, (\operatorname{mod}4)}}\frac{1}{p}= \frac{1}{2}\log\log x+O(1). \end{equation*} \notag
Hence for each l\geqslant 0 the inner sum in (3.5) is at most
\begin{equation*} \frac{1}{l!}\biggl(\,\sum_{p\leqslant x^{1/60},\, p\neq 3\, (\operatorname{mod}4)}\frac{1}{\varphi(p)}+\frac{1}{\varphi(p^2)}+\dotsb \biggr)^l \leqslant \frac{1}{l!}\biggl(\frac{1}{2}\log\log x+B_1\biggr)^l \end{equation*} \notag
for some absolute positive constant B_1. Thus,
\begin{equation} N_1\ll \frac{x(\log\log x+B_1)^{k-1}}{(k-1)!\,\log x}\bigl(1+R+\dots+R^{120} \bigr). \end{equation} \tag{3.6}

Now we estimate N_2. Let p=P^-(b), and let r be the largest integer such that p^r\mid b. Then by the definition of a, we have ap^r>x^{1/30}. Thus, for any n\in A_2 we have p^r> x^{1/60}, and since p\leqslant x^{1/60}, we see that r\geqslant 2. Let \nu = \min\{{u\geqslant 1}: {p^u>x^{1/60}}\}. Then 2\leqslant \nu\leqslant r and p^{\nu-1}\leqslant x^{1/60}. Hence {p^\nu\leqslant x^{1/60}p\leqslant x^{1/30}}. We conclude that for each n\in A_2 the integer n^2+1 is divisible by p^\nu, where p is a prime number such that x^{1/60}<p^\nu\leqslant x^{1/30} and \nu\geqslant 2. Therefore,

\begin{equation*} N_2\leqslant\sum_{x^{1/60}<p^\nu\leqslant x^{1/30},\,\nu\geqslant 2}\biggl( \frac{2x}{p^\nu}+O(1)\biggr)\ll \sum_{x^{1/60}<p^\nu \leqslant x^{1/30},\,\nu\geqslant 2}\frac{x}{p^\nu}. \end{equation*} \notag
Note that p^{\nu} \geqslant \max\{p^2, x^{1/60}\}, and therefore p^{\nu}\geqslant px^{1/120}. It follows that
\begin{equation} N_2\ll \sum_{p\leqslant x^{1/30}}\frac{x}{px^{1/120}} \ll x^{1-1/120}\log\log x. \end{equation} \tag{3.7}

Finally, consider N_3. Setting q=P^+(a), we have P^-(b)\geqslant q+1 and

\begin{equation} \omega(b)\leqslant \frac{\log (x^2+1)}{\log (q+1)}\leqslant \frac{2\log x}{\log q}=:\eta. \end{equation} \tag{3.8}
Lemma 3.4 implies that
\begin{equation} \begin{aligned} \, N_3 &\leqslant \sum_{\substack{q\leqslant x^{1/30} \\ q\not{\equiv} 3\, (\operatorname{mod}4)}}\sum_{k-\eta\leqslant l\leqslant k-1}\sum_{\substack{x^{1/60}<a\leqslant x^{1/30} \\ P^+(a)=q, \, \omega(a)=l}}W_a(x,q) \nonumber \\ &\ll x\sum_{\substack{q\leqslant x^{1/30} \\ q\not{\equiv} 3\, (\operatorname{mod}4)}}\frac{1}{\log q}\sum_{k-\eta\leqslant l\leqslant k-1}2^l\sum_{\substack{x^{1/60}<a\leqslant x^{1/30} \\ P^+(a)=q, \, \omega(a)=l}}\frac{1}{\varphi(a)}. \end{aligned} \end{equation} \tag{3.9}
Let
\begin{equation} \delta=\frac{C}{\log q}, \quad\text{where } C=120\log(R+2)+60. \end{equation} \tag{3.10}
Let us denote by N_3^{(1)} and N_3^{(2)} the contributions from q\leqslant e^{2C} and q>e^{2C}, respectively. Since
\begin{equation*} \varphi(a)\gg\frac{a}{\log\log a}\gg\frac{x^{1/60}}{\log\log x}, \end{equation*} \notag
we have
\begin{equation} N_3^{(1)}\ll x^{59/60}\log\log x\sum_{q\leqslant e^{2C}}\sum_{1\leqslant l\leqslant \pi(q)}2^l\sum_{\substack{a\leqslant x^{1/30} \\ P^+(a)=q}}1 \ll x^{59/60}(\log x)^{c_R}, \end{equation} \tag{3.11}
where c_R>0 depends only on R. Now we turn to N_3^{(2)}. For fixed q and l we see that
\begin{equation*} \begin{aligned} \, S_{q,l} &:=\sum_{\substack{x^{1/60}<a\leqslant x^{1/30} \\ P^+(a)=q, \, \omega(a)=l}}\frac{1}{\varphi(a)} \leqslant \sum_{\substack{a\leqslant x^{1/30} \\ P^+(a)=q, \, \omega(a)=l}}\biggl(\frac{a}{x^{1/60}}\biggr)^{\delta}\frac{1}{\varphi(a)} \\ &\leqslant x^{-\delta/60}\frac{1}{(l-1)!}\biggl(\sum_{\substack{p<q \\ p\not{\equiv} 3\, (\operatorname{mod}4)}}\frac{p^{\delta}}{\varphi(p)} +\frac{p^{2\delta}}{\varphi(p^2)}+\dotsb \biggr)^{l-1}\biggl(\frac{q^{\delta}}{\varphi(q)} +\frac{q^{2\delta}}{\varphi(q^2)}+\dotsb\biggr). \end{aligned} \end{equation*} \notag
Note that
\begin{equation*} \frac{q^{\delta}}{\varphi(q)}+\frac{q^{2\delta}}{\varphi(q^2)}+\dotsb \ll_R \frac1q \quad\text{for } q>e^{2C}, \end{equation*} \notag
and the sum over the primes p is (since e^u\leqslant 1+O_K(u) for 0\leqslant u\leqslant K) equal to
\begin{equation*} \begin{aligned} \, &\sum_{\substack{p<q \\ p\not{\equiv} 3\, (\operatorname{mod}4)}}\frac{p^\delta}{p}+O_R(1) \\ &\qquad=\sum_{\substack{p<q \\ p\not{\equiv} 3\, (\operatorname{mod}4)}}\frac{1}{p}+ O_R\biggl(\delta\sum_{\substack{p<q \\ p\not{\equiv} 3\, (\operatorname{mod}4)}}\frac{\log p}{p}+1\biggr)\leqslant \frac{1}{2}\log\log x+B, \end{aligned} \end{equation*} \notag
where B=B(R)>0. Thus,
\begin{equation*} S_{q,l}\ll_R \frac{x^{-\delta/60}}{q(l-1)!}\biggl(\frac{1}{2}\log\log x+B\biggr)^{l-1} \end{equation*} \notag
and
\begin{equation} \begin{aligned} \, N_3^{(2)} &\ll_R x\sum_{\substack{e^{2C}<q\leqslant x^{1/30} \\ q\not\equiv 3\, (\operatorname{mod}4)}}\frac{x^{-\delta/60}}{q\log q}\sum_{k-\eta\leqslant l\leqslant k-1}\frac{2^l(1/2\log\log x+B)^{l-1}}{(l-1)!}\notag \\ &\ll \frac{x(\log\log x+2B)^{k-1}}{(k-1)!}\sum_{q\leqslant x^{1/30}}\frac{x^{-\delta/60}}{q\log q}(1+R+\dots +R^{[\eta]}). \end{aligned} \end{equation} \tag{3.12}
Using the inequality
\begin{equation*} 1+R+\dots+R^{[\eta]}\leqslant (R+2)^{\eta+1} \end{equation*} \notag
and the fact that
\begin{equation*} (R+2)^\eta x^{-\delta/60}=x^{-1/\log q} \end{equation*} \notag
(which follows from the definitions (3.8) and (3.10) of \eta and \delta, respectively), we see that the sum over primes q in (3.12) is at most
\begin{equation*} \begin{aligned} \, &(R+2) \sum_{q\leqslant x^{1/30}}\frac{(R+2)^{\eta}x^{-\delta/60}}{q\log q} \leqslant (R+2)\sum_{q\leqslant x^{1/2}}\frac{x^{-1/\log q}}{q\log q} \\ &\qquad\leqslant \frac{R+2}{\log x}\sum_{j\geqslant 1}\sum_{q\in (x^{2^{-(j+1)}}, \,x^{-2^j}]}\frac1q \,2^{j+1}\exp(-2^j) \ll_R \frac{1}{\log x}\,. \end{aligned} \end{equation*} \notag
Substituting this into (3.12) and taking (3.11) into account we find that
\begin{equation} N_3 \ll_R \frac{x(\log\log x+2B)^{k-1}}{(k-1)!\,\log x}. \end{equation} \tag{3.13}

Combining (3.4), (3.6), (3.7) and (3.13) we complete the proof.

§ 4. Proof of Theorem 1.1

Writing p-1=ab, where P^+(a)\leqslant x^{1/40} and P^-(b)>x^{1/40}, we can rewrite the sum \Phi(x) as

\begin{equation*} \Phi(x)=\sum_{\substack{a \leqslant x \\ P^+(a) \leqslant x^{1/40}}} \frac{1}{\tau(a)} \sum_{\substack{b \leqslant (x-1)/a \\ P^-(b) > x^{{1}/{40}} \\ ab +1\text{ is prime}}} \frac{1}{\tau(b)}. \end{equation*} \notag
Let b = p_1^{\alpha_1} p_2^{\alpha_2} \dotsb p_s^{\alpha_s} be the prime factorization of b. Then
\begin{equation*} x^{ (\alpha_1 + \alpha_2 + \dots + \alpha_s)/40} < b \leqslant x, \end{equation*} \notag
so that \alpha_1+\dots+\alpha_s < 40 and
\begin{equation*} \tau(b)=(\alpha_1+1) \dotsb (\alpha_s+1) \leqslant 2^{\alpha_1+\dots+\alpha_s} < 2^{40}. \end{equation*} \notag
Therefore,
\begin{equation*} \Phi(x) \geqslant 2^{-40} \sum_{\substack{a \leqslant x \\ P^+(a) \leqslant x^{1/40}}} \frac{1}{\tau(a)} \sum_{\substack{b \leqslant (x-1)/a \\ P^-(b) > x^{1/40} \\ ab +1\text{ is prime}}} 1 \geqslant 2^{-40} \sum_{\substack{a \leqslant x^{1/40} \\ a \text{ is even}}} \frac{1}{\tau(a)}F_a(x) . \end{equation*} \notag
Lemma 3.2 implies that
\begin{equation*} \Phi(x) \geqslant \frac{c_2 \pi(x)}{\log x}\sum_{\substack{a \leqslant x^{1/40} \\ a \text{ is even}}} \frac{1}{\tau(a)\varphi(a)}-R_2, \end{equation*} \notag
where c_2>0 and
\begin{equation*} 0\leqslant R_2 \leqslant \sum_{a\leqslant x^{1/40}}\sum_{d\leqslant x^{13/40}}|R(x;ad,1)| \leqslant \sum_{q\leqslant x^{7/20}}\tau(q)|R(x;q,1)|. \end{equation*} \notag
Using the trivial bound |R(x;q,1)|\ll x/q and the Cauchy-Schwarz inequality we obtain
\begin{equation*} \begin{aligned} \, R_2 &\ll x^{1/2} \sum_{q \leqslant x^{0.35}} \frac{\tau(q)}{q^{1/2}} (|R(x; q, 1)|)^{1/2} \\ &\leqslant x^{1/2} \biggl(\sum_{q \leqslant x^{0.35}} \frac{\tau^2(q)}{q}\biggr)^{1/2} \biggl(\sum_{q \leqslant x^{0.35}} |R(x; q, 1)|\biggr)^{1/2}. \end{aligned} \end{equation*} \notag
Applying the bound
\begin{equation*} \sum_{n\leqslant x}\frac{\tau^2(n)}{n} \asymp (\log x)^4, \end{equation*} \notag
which follows from \sum_{n\leqslant x}\tau^2(n)\asymp x(\log x)^3 (see [13], Ch. III, Exercise 7) by partial summation, and the Bombieri-Vinogradov theorem we find that, for any fixed {A>0},
\begin{equation*} R_2 \ll_A x^{1/2}(\log x)^2 \frac{x^{1/2}}{(\log x)^{A/2}}= \frac{x}{(\log x)^{A/2-2}}. \end{equation*} \notag
Taking A = 24, say, we obtain
\begin{equation*} R_2 \ll \frac{x}{(\log x)^{10}}. \end{equation*} \notag
Now we turn to the sum
\begin{equation*} T_1=\sum_{\substack{a \leqslant x^{1/40} \\ a \text{ is even}}} \frac{1}{\tau(a) \varphi(a)}=\sum_{l \leqslant 0.5x^{1/40}} \frac{1}{\tau(2l)\varphi(2l)}. \end{equation*} \notag

Since \tau(mn) \leqslant \tau(m)\tau(n) and \varphi(n) \leqslant n, we see that

\begin{equation*} T_1\gg \sum_{l \leqslant 0.5x^{1/40}} \frac{1}{\tau(l)l}. \end{equation*} \notag
By (1.1), using partial summation we have
\begin{equation*} T_1\gg (\log x)^{1/2}. \end{equation*} \notag
Hence
\begin{equation*} \Phi(x)\gg \frac{\pi(x)}{(\log x)^{1/2}}-O\biggl( \frac{x}{(\log x)^{10}}\biggr)\gg \frac{x}{(\log x)^{3/2}}. \end{equation*} \notag

Theorem 1.1 is proved.

§ 5. Proof of Theorem 1.2

First we prove the lower bound. For any z\geqslant2,

\begin{equation*} F(x)=\sum_{n \leqslant x} \frac{1}{\tau(n^2+1)}=\sum_{\substack{ab=n^2 + 1,\,n \leqslant x\\ P^+(a) \leqslant z,\, P^-(b) > z}} \frac{1}{\tau(ab)}. \end{equation*} \notag
Setting z = x^{1/30} we have \tau(b) \leqslant 2^{60}, and now by Lemma 3.4,
\begin{equation*} \begin{aligned} \, F(x) &\geqslant 2^{-60} \sum_{\substack{a \leqslant x^{1/30} \\ a \in \mathcal{M}}} \frac{1}{\tau(a)} W_a(x, x^{1/30})\gg \frac{x}{\log x} \sum_{\substack{a \leqslant x^{1/30} \\ a \in \mathcal{M}}} \frac{2^{\omega(a)}}{\tau(a)\varphi(a)} \\ &\geqslant \frac{x}{\log x}\sum_{\substack{a \leqslant x^{1/30} \\ a \in \mathcal{M} \\ a\text{ is square-free}}}\frac{1}{a}= \frac{x}{\log x}\sum_{\substack{a \leqslant x^{1/30} \\ a \in \mathcal{M}}} \frac{1}{a}\,\sum_{\delta^2\mid a}\mu(\delta). \end{aligned} \end{equation*} \notag
Changing the order of summation and using the fact that
\begin{equation*} \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}, \end{equation*} \notag
we have
\begin{equation} F(x)\gg \frac{x}{\log x}\sum_{\substack{\delta \leqslant x^{1/60} \\ \delta \in \mathcal{M}}} \frac{\mu(\delta)}{\delta^2} \sum_{\substack{a \leqslant x^{1/30}\delta^{-2} \\ a \in \mathcal{M} }} \frac{1}{a} \geqslant \biggl( 2-\frac{\pi^2}{6}\biggr)\frac{x}{\log x}\sum_{\substack{a \leqslant x^{1/30} \\ a \in \mathcal{M}}} \frac{1}{a}. \end{equation} \tag{5.1}
It is well known (see [14], § 183) that for y\geqslant 2 one has
\begin{equation*} \# \{a\leqslant y\colon p\mid a \ \Rightarrow\ p\equiv 1\ (\operatorname{mod} 4)\} \asymp \frac{y}{(\log y)^{1/2}}. \end{equation*} \notag

Using partial summation we obtain

\begin{equation*} \sum_{\substack{a\leqslant y \\ p\mid a \ \Rightarrow\ p\equiv 1\, (\operatorname{mod} 4) }}\frac{1}{a}\asymp (\log y)^{1/2}. \end{equation*} \notag
Applying this to (5.1) we find that
\begin{equation*} F(x)\gg \frac{x}{(\log x)^{1/2}}, \end{equation*} \notag
as required.

Now we prove the upper bound. By Lemma 3.5,

\begin{equation*} \begin{aligned} \, F(x)&\leqslant \sum_{n\leqslant x}\frac{1}{2^{\omega(n^2+1)}} \\ &=\sum_{k\leqslant 2\log\log x}\frac{\#\{n\leqslant x\colon \omega(n^2+1)=k\}}{2^k} + O\biggl(\sum_{k>2\log\log x}\frac{x}{2^k}\biggr) \\ &\ll \frac{x}{\log x}\sum_{k=1}^{+\infty}\frac{((1/2)\log\log x+(1/2)B)^{k-1}}{(k-1)!} + O\biggl(\frac{x}{\log x}\biggr)\ll \frac{x}{(\log x)^{1/2}}. \end{aligned} \end{equation*} \notag

Theorem 1.2 is proved.


Bibliography

1. E. C. Titchmarsh, “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429  crossref  zmath
2. Yu. V. Linnik, “New versions and new uses of the dispersion method in binary additive problems”, Soviet Math. Dokl., 2 (1961), 468–471  mathnet  mathscinet  zmath
3. H. Halberstam, “Footnote to the Titchmarsh-Linnik divisor problem”, Proc. Amer. Math. Soc., 18 (1967), 187–188  crossref  mathscinet  zmath
4. E. Bombieri, J. B. Friedlander and H. Iwaniec, “Primes in arithmetic progressions to large moduli”, Acta Math., 156:3-4 (1986), 203–251  crossref  mathscinet  zmath
5. S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84  mathscinet  zmath
6. V. V. Iudelevich, “On the Karatsuba divisor problem”, Izv. Math., 86:5 (2022), 992–1019  mathnet  crossref  mathscinet
7. P. Pollack, “Nonnegative multiplicative functions on sifted sets, and the square roots of -1 modulo shifted primes”, Glasg. Math. J., 62:1 (2020), 187–199  crossref  mathscinet  zmath
8. M. B. Barban and P. P. Vekhov, “Summation of multiplicative functions of polynomials”, Math. Notes, 5:6 (1969), 400–407  mathnet  crossref  mathscinet  zmath
9. K. Ford and H. Halberstam, “The Brun-Hooley sieve”, J. Number Theory, 81:2 (2000), 335–350  crossref  mathscinet  zmath
10. J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6:1 (1962), 64–94  crossref  mathscinet  zmath
11. S. Uchiyama, “On some products involving primes”, Proc. Amer. Math. Soc., 28:2 (1971), 629–630  crossref  mathscinet  zmath
12. G. Tenenbaum, “Note sur les lois locales conjointes de la fonction nombre de facteurs premiers”, J. Number Theory, 188 (2018), 88–95  crossref  mathscinet  zmath
13. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp.  mathscinet  zmath
14. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2 Bände, B. G. Teubner, Leipzig–Berlin, 1909, x+564 pp., ix+567–961 pp.  mathscinet  zmath

Citation: M. R. Gabdullin, S. V. Konyagin, V. V. Iudelevich, “Karatsuba's divisor problem and related questions”, Sb. Math., 214:7 (2023), 919–933
Citation in format AMSBIB
\Bibitem{GabKonIud23}
\by M.~R.~Gabdullin, S.~V.~Konyagin, V.~V.~Iudelevich
\paper Karatsuba's divisor problem and related questions
\jour Sb. Math.
\yr 2023
\vol 214
\issue 7
\pages 919--933
\mathnet{http://mi.mathnet.ru/eng/sm9815}
\crossref{https://doi.org/10.4213/sm9815e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4681472}
\zmath{https://zbmath.org/?q=an:1534.11114}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023SbMat.214..919G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146029300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180429388}
Linking options:
  • https://www.mathnet.ru/eng/sm9815
  • https://doi.org/10.4213/sm9815e
  • https://www.mathnet.ru/eng/sm/v214/i7/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:530
    Russian version PDF:40
    English version PDF:46
    Russian version HTML:266
    English version HTML:135
    References:45
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025