Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 2, Pages 411–425
DOI: https://doi.org/10.1070/SM1994v078n02ABEH003477
(Mi sm977)
 

This article is cited in 13 scientific papers (total in 13 papers)

On linear and multiplicative relations

E. M. Matveev
References:
Abstract: A theorem on the successive minima of lattices corresponding to the integer solutions of systems of linear equations is proved. As a corollary, theorems on the successive minima are obtained for the set of solutions of equations of the form
x1lnα1++xnlnαn=lnβ,x1,,xnZ,
for fixed α1,,αn in an algebraic number field K and for variable βK equal either to 1 or a root of unity.
Received: 24.02.1992
Bibliographic databases:
UDC: 511
MSC: Primary 11H06, 11J13; Secondary 11P21, 11J86
Language: English
Original paper language: Russian
Citation: E. M. Matveev, “On linear and multiplicative relations”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 411–425
Citation in format AMSBIB
\Bibitem{Mat93}
\by E.~M.~Matveev
\paper On linear and multiplicative relations
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 2
\pages 411--425
\mathnet{http://mi.mathnet.ru/eng/sm977}
\crossref{https://doi.org/10.1070/SM1994v078n02ABEH003477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1225976}
\zmath{https://zbmath.org/?q=an:0816.11037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PD76700009}
Linking options:
  • https://www.mathnet.ru/eng/sm977
  • https://doi.org/10.1070/SM1994v078n02ABEH003477
  • https://www.mathnet.ru/eng/sm/v184/i4/p23
  • This publication is cited in the following 13 articles:
    1. Tao Zheng, Lecture Notes in Computer Science, 12291, Computer Algebra in Scientific Computing, 2020, 621  crossref
    2. Bugeaud Y., “Linear Forms in Logarithms and Applications”, Linear Forms in Logarithms and Applications, Irma Lectures in Mathematics and Theoretical Physics, 28, Eur. Math. Soc., 2018, 1–224  crossref  mathscinet  isi
    3. Akhtari Sh. Vaaler J.D., “Heights, regulators and Schinzel's determinant inequality”, Acta Arith., 172:3 (2016), 285–298  crossref  mathscinet  zmath  isi  scopus
    4. Vaaler J.D., “Heights on Groups and Small Multiplicative Dependencies”, Trans. Am. Math. Soc., 366:6 (2014), 3295–3323  crossref  mathscinet  zmath  isi
    5. W. A. Coppel, Number Theory, 2009, 327  crossref
    6. A. Dubickas, “Multiplicative relations with conjugate algebraic numbers”, Ukr Math J, 59:7 (2007), 984  crossref  mathscinet  zmath
    7. Number Theory, 2006, 385  crossref
    8. E. M. Matveev, “The index of multiplicative groups of algebraic numbers”, Sb. Math., 196:9 (2005), 1307–1318  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. Loher T., Masser D., “Uniformly Counting Points of Bounded Height”, Acta Arith., 111:3 (2004), 277–297  crossref  mathscinet  zmath  isi
    10. E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II”, Izv. Math., 64:6 (2000), 1217–1269  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers”, Izv. Math., 62:4 (1998), 723–772  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. Daniel Bertrand, “Duality on tori and multiplicative dependence relations”, J Austral Math Soc, 62:2 (1997), 198  crossref  mathscinet  zmath  isi
    13. Bertrand D., “Minimal Heights and Polarizations on Group Varieties”, Duke Math. J., 80:1 (1995), 223–250  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:377
    Russian version PDF:123
    English version PDF:30
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025