|
The convex hull and the Carathéodory number of a set in terms of the metric projection operator
K. S. Shklyaevab a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Abstract:
We prove that each point of the convex hull of a compact set $M$ in a smooth Banach space $X$ can be approximated arbitrarily well by convex combinations of best approximants from $M$ to $x$ (values of the metric projection operator $P_M(x)$), where $x \in X$. As a corollary, we show that the Carathéodory number of a compact set $M \subset X$ with at most $k$-valued metric projection $P_M$ is majorized by $k$, that is, each point in the convex hull of $M$ lies in the convex hull of at most $k$ points of $M$.
Bibliography: 26 titles.
Keywords:
metric projection, convex hull, Banach space, smoothness, Minkowski functional, Carathéodory number.
Received: 23.02.2022 and 11.05.2022
§ 1. Introduction Let $(X, \| \cdot \|)$ be a real Banach space. The distance of a point $x \in X$ to a set $M \subset X$ is defined by
$$
\begin{equation*}
d(x, M)= \inf_{y \in M}\| x-y \|.
\end{equation*}
\notag
$$
The closed and open balls, and the sphere in $X$ with centre $x \in X$ and radius $r > 0$ are denoted by $\overline{B}(x,r)$, $B(x,r)$ and $S(x,r)$, respectively. We let $\operatorname{ri} M$ denote the relative interior of a set $M \subset X$, that is, the interior of $M$ in its affine hull
$$
\begin{equation*}
\operatorname{aff} M := \biggl\{ \sum_{i=1}^k \lambda_i x_i\colon k \in \mathbb{N}, \, x_i \in M, \, \lambda_i \in \mathbb{R}, \, \sum_{i=1}^k \lambda_i=1 \biggr\}.
\end{equation*}
\notag
$$
The metric projection of a point $x$ onto a set $M$ is defined by
$$
\begin{equation*}
P_M(x)=\bigl\{y \in M\colon \| x-y \|=d(x, M) \bigr\}.
\end{equation*}
\notag
$$
We say that $M$ is a Chebyshev set if $P_M(x)$ is a singleton for each $x \in X$. The convex hull of a set $M$ is denoted by $\operatorname{conv} M$. The problem of the convexity of Chebyshev sets in concrete and abstract normed spaces has been studied extensively (see, for example, Efimov and Stechkin [1], Klee [2], [3], Berdyshev [4], Brø ndsted [5], Brown [6], [7], Vlasov [8], Balaganskii and Vlasov [9], Tsar’kov [10], [11], and Alimov [12], [13]). The investigations of the geometry of Chebyshev sets in finite-dimensional normed linear spaces date back to Bunt [14], Mann [15] and Motzkin [16], [17]. In his thesis [14] (1934) Bunt proved that, in strictly convex finite-dimensional Banach spaces with second-order modulus of smoothness (and, in particular, in finite-dimensional Euclidean spaces), each Chebyshev set is convex; he also showed that in two-dimensional spaces the condition of strict convexity can be dropped. In particular, this result implies that, in finite-dimensional Euclidean spaces $\mathbb R^n$, the class of Chebyshev sets coincides with the class of convex closed sets. A bit later, Motzkin [16] showed that any Chebyshev set in a two-dimensional normed plane is convex if and only if the space is smooth (a space is smooth if the unit sphere there has a unique support hyperplane at each point). Klee extended Bunt’s and Motzkin’s results in his early papers [2] and [3]: he showed that in any finite-dimensional smooth space every Chebyshev set is convex. Efimov and Stechkin were among the first authors to investigate Chebyshev sets in infinite-dimensional Banach spaces. In particular, they stated the problem of the convexity of Chebyshev sets in (infinite-dimensional) Hilbert spaces. Open Problem A. Is every Chebyshev set in an infinite-dimensional Hilbert space convex? For a survey of results for infinite-dimensional spaces, see [9]. As a natural generalization of Chebyshev sets, we consider sets with at most $k$-valued, nonempty metric projection. Definition 1. Given a set $M \subset X$ and a natural number $k$, set
$$
\begin{equation*}
\operatorname{conv}_k M := \biggl\{\sum_{i=1}^k \lambda_i x_i\colon x_i \in M, \, \lambda_i \in [0,1], \,\sum_{i=1}^k \lambda_i=1 \biggr\}.
\end{equation*}
\notag
$$
Definition 2. The Carathéodory number of a set $M$ is defined as the smallest natural number $k$ such that $\operatorname{conv}_k M=\operatorname{conv} M$. The following Carathéodory convex hull theorem is well known (see [18]): if $M \subset \mathbb{R}^d$, then $\operatorname{conv}_{d+1} M= \operatorname{conv} M $, that is, the Carathéodory number of $M$ is at most $d+1$. Under some additional conditions on a set $M$ the upper estimate of its Carathéodory number can be improved. Results of this type are due to Fenchel (see [10]), Bárány and Karasev (see [20]), and other authors. A detailed account of the available results on the Carathéodory number can be found in [20]. In the present paper we examine the Carathéodory numbers of sets $M$ with at most $k$-valued metric projection $P_M$. In 2010 Borodin stated the following problem. Problem A. Prove that in any finite-dimensional smooth space $X$ the Carathéodory number of each closed set $M \subset X$ with at most $k$-valued metric projection $P_M$ is at most $k$. Note that for $k=1$ this claim is valid because each Chebyshev set in a smooth finite-dimensional space is convex. Also note that for $k \geqslant d+1$ it holds automatically by Carathéodory’s theorem. For $k= d=2$ Problem A was solved by Flerov [21]. In our paper Problem A is solved under certain constraints on $M$, for spaces of arbitrary dimension (in particular, for boundedly compact sets $M$ in infinite-dimensional Banach spaces $X$). In Theorems 1–5 we present more general results on representations of a point in the convex hull of a set $M \subset X$ as a convex combination of points in the metric projection $P_M(x)$ for some $x \in X$. Using these results, in Corollaries 1–4 we derive analogues and extensions of Problem A. Moreover, with the help of Corollaries 1–4 we readily obtain sufficient conditions for the existence of a point with at most $k$-valued metric projection. The corresponding sufficient conditions are as follows: $\operatorname{conv}{M} \neq \operatorname{conv}_k{M}$ in Corollaries 1 and 4, and $\overline{\operatorname{conv}{M}} \neq \overline{\operatorname{conv}_k{M}}$ in Corollaries 2 and 3. Note that the infinite-dimensional analogue of Problem A for a Hilbert space $X$, with no constraints on $M$, includes Open Problem A as a particular case (for $k=1$).
§ 2. Auxiliary lemmas In what follows $X_d$ denotes a normed space of dimension $d$. Lemma 1. Let $a, b \in X_d$, $r > 0$, let $a \in B(b,r)$, and let $f\colon \overline{B}(b,r) \to X_d$ be a continuous mapping such that $a \notin [x, f(x)]$ for all $x \in S(b,r)$. Then there exists a point $x_* \in B(b,r)$ such that $f(x_*)=a$. Proof. It can be assumed without loss of generality that $b=0$ and $r=1$. Assume that $f(x) \neq a$ for all $x \in B(0,1)$. Since $a \notin [x, f(x)]$ for all $x \in S(0,1)$, and since $f$ is continuous, there exists $\tau \in (0,1)$ such that $a \notin [x, f(t x)]$ for all $x \in S(0,1)$ and all $t \in [1-\tau, 1]$. Hence
$$
\begin{equation}
g(x,t) := \frac{t+\tau-1}{\tau}x+\frac{1-t}{\tau}f(tx) \neq a
\end{equation}
\tag{1}
$$
for all $x \in S(0,1)$ and all $t \in [1-\tau, 1]$. Consider the automorphism of the sphere $S(0,1)$:
$$
\begin{equation*}
u\colon x \mapsto \frac{x-a}{\| x-a\|}.
\end{equation*}
\notag
$$
The map $\widetilde{f}\colon \overline{B}(0,1) \to S(0,1)$ defined by
$$
\begin{equation*}
\widetilde{f}(tx) := \begin{cases} u^{-1}\biggl( \dfrac{f(tx)-a}{\| f(tx)-a \| }\biggr), &x \in S(0,1),\ t \in [0, 1-\tau), \\ u^{-1}\biggl(\dfrac{g(x,t)-a}{\| g(x,t)-a \| }\biggr), &x \in S(0,1),\ t \in [1-\tau,1], \end{cases}
\end{equation*}
\notag
$$
is well defined in view of (1). Moreover, for all $x \in S(0,1)$,
$$
\begin{equation*}
\frac{g(x,1-\tau)-a}{\| g(x,1-\tau)-a \|}=\frac{f((1-\tau)x)-a}{\| f((1-\tau)x)-a \|}, \qquad \frac{g(x,1)-a}{\| g(x,1)-a\|}=\frac{x-a}{\| x-a\|}.
\end{equation*}
\notag
$$
Hence $\widetilde{f}$ is continuous and $\widetilde{f}|_{S(0,1)} \equiv \mathrm{id}$, that is, $\widetilde{f}$ retracts the ball $\overline{B}(0,1)$ onto its boundary $S(0,1)$, which is impossible (see [22], § 38).
Lemma 1 is proved. Let $(X, d_X)$ and $(Y, d_Y)$ be metric spaces. A set-valued map $F\colon X \to 2^Y \setminus \{\varnothing\}$ is said to be upper semicontinuous at a point $x_0 \in X$ if for each $\varepsilon > 0$ there exists $\delta > 0$ such that, for all $x \in B(x_0,\delta)$,
$$
\begin{equation*}
F(x) \subset B_\varepsilon(F(x_0)) := \Bigl\{ y \in Y\colon d_Y(y, F(x_0)) := \inf_{z \in F(x_0)}d_Y(y, z) < \varepsilon \Bigr\}.
\end{equation*}
\notag
$$
The graph of a set-valued mapping $F\colon X \to 2^Y \setminus \{\varnothing\}$ is defined by
$$
\begin{equation*}
\Gamma_F := \bigl\{ (x,y)\colon x \in X, \, y \in F(x) \bigr\};
\end{equation*}
\notag
$$
it is equipped with the distance $d( (x_1, y_1), (x_2, y_2) ) \,{:=} \max (d_X(x_1, x_2)$, $ d_Y(y_1, y_2) )$. Given a linear space $Y$, we denote the class of nonempty closed convex subsets of $Y$ by $\mathrm{Conv}(Y)$. Lemma 2. Let $a, b \in X_d$, $r > 0$, let $a \in B(b,r)$, and let $F\colon \overline{B}(b,r) \to \mathrm{Conv}(X_d)$ be an upper semicontinuous mapping such that $a \notin \operatorname{conv}(\{x\} \cup F(x))$ for all $x \in S(b,r)$. Then $a \in F(x_*)$ for some $x_* \in B(b,r)$. Proof. It can be assumed without loss of generality that $b=0$ and $r=1$. Suppose that $a \notin F(x)$ for all $x \in \overline{B}(0,1)$. Since $F$ is upper semicontinuous, there exists $\varepsilon \in (0, (1-\| a \|)/2)$ such that, for all $x \in \overline{B}(0,1)$ and all $y \in \overline{B}(0,1) \setminus B(0, 1-\varepsilon)$,
$$
\begin{equation}
B(a,2\varepsilon) \cap F(x)=\varnothing\quad\text{and} \quad B(a,\varepsilon) \cap \operatorname{conv}(\{y\} \cup F(y))=\varnothing.
\end{equation}
\tag{2}
$$
Next we require the following result.
Theorem B (see [23], Theorem 1). Let $S$ be a compact metric space, $Y$ be a normed linear space and $\Phi\colon S \to \mathrm{Conv}(Y)$ be an upper semicontinuous mapping. Then for each $\varepsilon > 0$ there exists a single-valued $\varepsilon$-approximation of $\Phi$, that is, a continuous single-valued mapping $\varphi\colon S \to \operatorname{conv} \Phi(S)$ such that the graphs $\Gamma_\Phi$ and $\Gamma_\varphi$ of $\Phi$ and $\varphi$, respectively, satisfy $d^*(\Gamma_\varphi, \Gamma_\Phi):= \sup_{y \in \Gamma_\varphi} d(y, \Gamma_\Phi) < \varepsilon$.
By Theorem B there exists a single-valued $\varepsilon$-approximation $f\colon \overline{B}(0,1) \to X$ of the set-valued mapping $F$. Since $d^* (\Gamma_{f},\Gamma_F) < \varepsilon$, by (2) we have
$$
\begin{equation}
B(a,\varepsilon) \cap f(\overline{B}(0,1))=\varnothing.
\end{equation}
\tag{3}
$$
Next we claim that $a \notin [y,f(y)]$ for $y \in S(0,1)$. Indeed, otherwise there exists $\lambda \in [0,1]$ such that
$$
\begin{equation}
a=\lambda y+(1-\lambda)f(y).
\end{equation}
\tag{4}
$$
Since $d^* (\Gamma_{f},\Gamma_F) < \varepsilon$, there would exist $z \in B(y,\varepsilon) \cap \overline{B}(0,1)$ and $w \in B(f(y),\varepsilon)$ such that $w \in F(z)$. Hence by (4)
$$
\begin{equation*}
\bigl\| \lambda z+(1-\lambda)w-a\bigr\| \leqslant \|\lambda(z-y\|+\bigl\| (1-\lambda)(w-f(y)) \bigr\| < \varepsilon,
\end{equation*}
\notag
$$
that is, $B(a,\varepsilon) \cap \operatorname{conv}(\{z\} \cup F(z)) \neq \varnothing$, which contradicts (2). So $f$ satisfies the conditions of Lemma 1, and therefore there exists $x_* \in B(0,1)$ such that $f(x_*)=a$. However, this is impossible by (3).
Lemma 2 is proved.
§ 3. Results for starlike domains The results in this section are related to combinatorial geometry; they are close to [24] in spirit. Recall that a domain $U \subset \mathbb{R}^d$ is starlike with respect to $0$ if $\lambda U \subset U$ for all $\lambda \in (0,1)$ and $0 \in U$. Let $U$ be a domain starlike with respect to $0$, and let $ p_u$ be its Minkowski functional, namely,
$$
\begin{equation*}
p_u\colon \mathbb{R}^d \to \mathbb{R}_+, \qquad x \mapsto \sup\bigl\{ \lambda \geqslant 0\colon \lambda x \in U\bigr\}.
\end{equation*}
\notag
$$
Traces of the following definition can be found in [25], Remark 2. Definition 3. Let $U \subset \mathbb{R}^d$ be a bounded starlike domain with respect to $0$. Given a point $x \in \mathbb{R}^d$ and a closed set $M \subset \mathbb{R}^d$, we set
$$
\begin{equation*}
\begin{gathered} \, U(x, r):= x+rU, \qquad \overline{U}(x,r) := \overline{U(x,r)}, \qquad d_u(x,M)= \inf\bigl\{ p_u(y-x)\colon y \in M \bigr\} \\ \text{and}\quad P^u_M(x) := M \cap \overline{U}(x, d_u(x,M)). \end{gathered}
\end{equation*}
\notag
$$
Note that
$$
\begin{equation*}
P^u_M(x) \neq \varnothing\quad\text{and} \quad M \cap U(x, d_u(x,M))= \varnothing,
\end{equation*}
\notag
$$
since $M$ is closed and $U$ is open. However, in general, the equality $M \cap \overline{U}(x,\lambda)=\varnothing$ need not hold for all $\lambda \in (0, d_u(x,M)) $. Recall that a function $f\colon \mathbb{R}^d \to \mathbb{R}$ is said to be upper semicontinuous on $\mathbb{R}^d$ if $\varlimsup_{x \to x_0} f(x) \leqslant f(x_0)$ for all $x_0 \in \mathbb{R}^d$. Lemma 3. Let $U \subset \mathbb{R}^d$ be a bounded starlike domain with respect to $0$ and let $M$ be a nonempty closed subset of $\mathbb{R}^d$. Then 1) the function $d_u(\,\cdot\,, M)$ is upper semicontinuous on $\mathbb{R}^d$; 2) the set-valued map $P^u_M$ is upper semicontinuous on $\mathbb{R}^d$. Proof. 1) Let $x \in \mathbb{R}^d$. We claim that the function $d_u(\,\cdot\, , M)$ is upper semicontinuous at $x$. In other words, we need to show that, for each sequence $x_n \to x$, $n\to\infty$,
$$
\begin{equation*}
d_u(x,M) \geqslant \varlimsup_{n \to \infty} d_u(x_n,M) =: r.
\end{equation*}
\notag
$$
Assume on the contrary that $d_u(x,M) < r$. Hence $M \cap U(x,r) \neq \varnothing$. We choose $y \in M \cap U(x,r)$ and set $z := (y-x)/r \in U$. It is clear that $y=x+r z$. Let $\varepsilon > 0$ be such that
$$
\begin{equation*}
B(x+rz, 4r\varepsilon) \subset U(x,r)=x+r U.
\end{equation*}
\notag
$$
We also set $r_n := d_u(x_n,M)$. The above inclusion is invariant under homothetic transformations and translations, so
$$
\begin{equation}
B(x_n+r_n z, 4 r_n \varepsilon ) \subset (x_n+r_n U )=U(x_n,r_n).
\end{equation}
\tag{5}
$$
We choose $n$ so that
$$
\begin{equation*}
\| x-x_n\| < r \varepsilon\quad\text{and} \quad |r-r_n| < \min\biggl(\frac{r \varepsilon}{\| z \|+1}, \frac{r}{4}\biggr).
\end{equation*}
\notag
$$
In this case we have the estimate
$$
\begin{equation*}
\| x+r z -(x_n+r_n z)\| \leqslant \| x-x_n \|+\| (r-r_n)z \| < 2 r \varepsilon, \qquad r_n > \frac{3r}{4}.
\end{equation*}
\notag
$$
Using the last two inequalities and (5) we obtain
$$
\begin{equation*}
B(y, r \varepsilon)=B(x+r z, r \varepsilon) \subset B(x_n+r_n z, 3 r \varepsilon) \subset B(x_n+r_n z, 4 r_n \varepsilon) \subset U(x_n, r_n ).
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
M \cap B(y, r\varepsilon) \subset M \cap U(x_n, r_n )=\varnothing;
\end{equation*}
\notag
$$
however, $y \in M \cap B(y, r \varepsilon)$ because $y$ has been chosen in $M \cap U(x,r)$. Therefore, $M \cap U(x,r)=\varnothing$, and so $d_u(x, M) \geqslant r$. This proves the first assertion of the lemma.
2) We claim that the set-valued mapping $P^u_M$ is upper semicontinuous at $x$. To prove this it suffices to show that if $x_n \to x$ as $n\to\infty$, $y_n \in P^u_M(x_n)$, and $y_n \to y$ as $n\to\infty$, then $y \in P^u_M(x)$. Passing to subsequences we can assume without loss of generality that $r_{n} := d_u(x_{n}, M) \to r$. The sets $\overline{U}(x_{n},r_{n})$ converge to $\overline{U}(x,r)$ in the Hausdorff metric. Hence $y \in \overline{U}(x,r)$. In addition, $y \in M$ because $y_n \in M$ and since $M$ is closed. On the other hand, since $d_u(\cdot,M)$ is upper semicontinuous, we have $R := d_u(x,M) \geqslant r$. Therefore, $y \in \overline{U}(x,R) \cap M$, that is, $y \in P^u_M(x)$.
Lemma 3 is proved. As a direct corollary to Lemmas 2 and 3 we have the following. Theorem 1. Let $U \subset \mathbb{R}^d$ be a bounded starlike domain with respect to $0$, let ${M \subset \mathbb{R}^d}$ be a closed set, and let $a, b \in \mathbb{R}^d$ and $r > 0$ be such that $a \in B(b,r)$ and $a \notin \operatorname{conv}(\{x\} \cup P^u_M(x))$ for all $x \in S(b,r)$. Then there exists $x_* \in \mathbb{R}^d$ such that $a \in \operatorname{conv}(P^u_M(x_*))$. Under additional constraints on a set $M$ and a domain $U$, the above result can be refined as follows. Theorem 2. Let $U \subset \mathbb{R}^d$ be a bounded starlike domain with respect to $0$, let $\partial U$ be a $C^1$-smooth closed $(d-1)$-dimensional manifold, and let $M \subset \mathbb{R}^d$ be compact. Then $\operatorname{ri}(\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))$ and $\operatorname{conv} M=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}$. Proof. 1) First we show that $\operatorname{ri}(\operatorname{conv} M)\,{\subset} \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))$.
Consider the case when $\operatorname{aff} M= \mathbb{R}^d$. Then
$$
\begin{equation*}
\operatorname{ri} (\operatorname{conv} M)=\operatorname{int} (\operatorname{conv} M).
\end{equation*}
\notag
$$
Let $a \in \operatorname{ri} (\operatorname{conv} M) \setminus M$. We can find $a_1, \dots, a_\nu \in M$ and $\delta \in (0,1)$ such that
$$
\begin{equation}
B(a, 3\delta) \subset \operatorname{conv}(\{a_1, \dots, a_\nu\}), \qquad B(a, 3\delta) \cap M=\varnothing.
\end{equation}
\tag{6}
$$
We claim that there exists a point $x_* \in \mathbb{R}^d$ such that $a \in \operatorname{conv}(P^u_M(x_*))$. By Theorem 1, to prove this it suffices to find $R > 0$ such that
$$
\begin{equation*}
a \notin \operatorname{conv}(\{x\} \cup P^u_M(x)) \quad \forall\, x \in S(0,R).
\end{equation*}
\notag
$$
Let $V \subset \mathbb{R}^d$ be a bounded starlike domain, and let $\partial V$ be a $C^1$-smooth closed $(d-1)$-dimensional manifold. Given a point $y \in \partial V$, we denote the unit outward normal vector to $V$ at $y$ by $N_{\partial V}(y)$. We also consider the half-space
$$
\begin{equation}
\Pi_{\partial V}(y, t):= \bigl\{ x \in \mathbb{R}^d\colon \langle x, N_{\partial V}(y)\rangle \leqslant\langle y, N_{\partial V}(y)\rangle-t \bigr\}.
\end{equation}
\tag{7}
$$
The diameter of $M$ is defined by
$$
\begin{equation*}
\operatorname{diam}(M)=\sup\{ \| y-y' \|\colon y, y' \in M \}.
\end{equation*}
\notag
$$
Since $\partial U$ is $C^1$-smooth and compact, there exists $\lambda_0 > 0$ such that, for all $\lambda \geqslant \lambda_0$ and $y \in \partial U$,
$$
\begin{equation}
\lambda \overline{U} \cap \overline{B}(\lambda y, \operatorname{diam}(M) ) \subset \Pi_{\lambda \partial U}(\lambda y, -\delta) \cap \overline{B}(\lambda y, \operatorname{diam}(M) )
\end{equation}
\tag{8}
$$
and
$$
\begin{equation}
\lambda U \cap \overline{B}(\lambda y, \operatorname{diam}(M) ) \supset \Pi_{\lambda \partial U}(\lambda y, \delta) \cap \overline{B}(\lambda y, \operatorname{diam}(M) ).
\end{equation}
\tag{9}
$$
Next, there exists $R > 0$ such that
$$
\begin{equation}
d_u(x,M) \geqslant \lambda_0 \quad \forall\, x \in S(0,R).
\end{equation}
\tag{10}
$$
We prove that
$$
\begin{equation*}
B(a,\delta) \cap \operatorname{conv}(\{x\} \cup P^u_M(x))=\varnothing \quad \forall\, x \in S(0,R).
\end{equation*}
\notag
$$
Assume the contrary. Consider an arbitrary $b \in B(a,\delta) \cap \operatorname{conv}(\{x\} \cup P^u_M(x))$ and take $y_1, \dots, y_m \in P^u_M(x)$ such that $b \in \operatorname{conv}(\{x, y_1, \dots, y_m \})$. We also set
$$
\begin{equation*}
U' := U(x, d_u(x,M)).
\end{equation*}
\notag
$$
It is clear that $\partial U'$ is homothetic to $\partial U$ and $y_1, \dots, y_m \in \partial U'$. Consider
$$
\begin{equation*}
N(y_1) := N_{\partial U'}(y_1)\quad\text{and} \quad \Pi(y_1,t) := \Pi_{\partial U'}(y_1, t).
\end{equation*}
\notag
$$
Since $U'$ is a starlike domain with respect to the point $x$, we have $x \in \Pi(y_1, 0)$, and therefore $x \in \Pi(y_1, -\delta)$. Substituting $\lambda U=U'-x$ and $\lambda y=y_1-x$ into (8) and (9) and adding $x$ to the resulting expressions we obtain
$$
\begin{equation}
\overline{U'} \cap \overline{B}(y_1, \operatorname{diam}(M) ) \subset \Pi(y_1, -\delta) \cap \overline{B}(y_1, \operatorname{diam}(M) )
\end{equation}
\tag{11}
$$
and
$$
\begin{equation}
U' \cap \overline{B}(y_1, \operatorname{diam}(M) ) \supset \Pi(y_1, \delta) \cap \overline{B}(y_1, \operatorname{diam}(M) ).
\end{equation}
\tag{12}
$$
It is clear that $\| y_1-y_i \| \leqslant \operatorname{diam}(M)$ for all $i=1, \dots, m$. Hence (11) implies that $y_i \in \Pi(y_1,-\delta)$. As a result, $\operatorname{conv}\{x, y_1, \dots, y_m\} \subset \Pi(y_1,-\delta)$, and therefore ${b \in \Pi(y_1,-\delta)}$. Consequently, $c := b-2\delta N(y_1) \in \Pi(y_1, \delta)$. It is clear that ${c\in B(a, 3\delta)}$, and now it follows from (6) that some of the points $a_1, \dots, a_\nu$ also lie in $\Pi(y_1,\delta)$. Without loss of generality we can assume below that $a_1 \in \Pi(y_1,\delta)$. On the other hand, since $M \subset \overline{B}(y_1, \operatorname{diam}(M))$, using (12) we obtain
$$
\begin{equation*}
U' \cap M \supset \Pi(y_1,\delta) \cap M,
\end{equation*}
\notag
$$
which, however, is impossible, because $U' \cap M=\varnothing$ and $a_1 \in \Pi(y_1,\delta) \cap M$.
Now consider the case when $\operatorname{aff} M \neq \mathbb{R}^d$. We can assume without loss of generality that $0 \in M$, that is, $\operatorname{aff} M= \operatorname{span} M$. We set $l:= d-\dim (\operatorname{span} M) > 0$. It is clear that there exists a set $W=\{w_1, \dots, w_l\}$, where $w_1, \dots, w_l \in \mathbb{R}^d$, such that
$$
\begin{equation}
\operatorname{aff} (M \cup W)=\operatorname{span} (M \cup W)=\mathbb{R}^d.
\end{equation}
\tag{13}
$$
By what has already been proved, for each point $a \in \operatorname{ri}(\operatorname{conv} M)$ and
$$
\begin{equation}
b := \frac{a}{2}+\frac{1}{2l}(w_1+\dots+w_l) \in \operatorname{int}(\operatorname{conv}(M \cup W))
\end{equation}
\tag{14}
$$
there exists $x_* \in \mathbb{R}^d$ such that
$$
\begin{equation*}
b \in \operatorname{conv}(P^u_{M \cup W}(x_*)).
\end{equation*}
\notag
$$
Therefore, we have
$$
\begin{equation*}
b=\lambda y+(1-\lambda)w,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\lambda \in [0,1], \qquad y \in \operatorname{conv}(P^u_{M \cup W}(x_*) \cap M )\quad\text{and} \quad w \in \operatorname{conv}(P^u_{M \cup W}(x_*) \cap W).
\end{equation*}
\notag
$$
Since $\dim{(\operatorname{span}{M})}+\dim{(\operatorname{span}{W})}=n$, we have $\operatorname{span}{M} \cap \operatorname{span}{W}=\{ 0\}$. Now (14) implies that
$$
\begin{equation*}
\lambda=\frac{1}{2}, \qquad y=a\quad\text{and} \quad w=\frac{w_1+\dots+w_l}{l}.
\end{equation*}
\notag
$$
As a result,
$$
\begin{equation*}
a \in \operatorname{conv}(P^u_{M \cup W}(x_*) \cap M)=\operatorname{conv}(P^u_{M}(x_*)),
\end{equation*}
\notag
$$
as claimed.
2) Let us now prove the equality $\operatorname{conv} M=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}$. Since $M$ is compact, we have $\operatorname{conv} M=\overline{\operatorname{ri}(\operatorname{conv} M)} \subset \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}$. It is clear that the reverse inclusion also holds because $\operatorname{conv}(P^u_M(x) ) \subset \operatorname{conv} M$ for all $x \in \mathbb{R}^d$.
Theorem 2 is proved. Remark 1. Under the hypotheses of Theorem 2, for each $d \geqslant 2$ there exists a compact set $M \subset \mathbb{R}^d$ such that $\operatorname{conv} M \neq \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))$. Proof. As $U$ we take the Euclidean ball $B(0,1)$ in $\mathbb{R}^d$. Let $e_1, \dots, e_d$ be an orthonormal basis for $\mathbb{R}^d$, and let $M=\overline{B}(e_2,1) \cup \overline{B}(-e_2,1)$. Then $P^u_M$ is the metric projection $P_M$ in the Euclidean space $\mathbb{R}^d$. It is clear that $(e_1 \pm e_2) \in M$, since $e_1 \in \operatorname{conv} M$. It is easily seen that if $e_1 \in \operatorname{conv}(P_M(x))$, then $P_M(x)=\{e_1+e_2, e_1-e_2 \}$. Hence the ball $\overline{B}(x, \| x-e_2\|-1)$ touches the balls $\overline{B}(e_2,1)$ and $\overline{B}(-e_2,1)$ at the points $e_1+e_2$ and $e_1-e_2$, respectively. Now one can draw a straight line through each triple of points $\{e_2, e_1+e_2, x\}$ and $\{-e_2, e_1-e_2, x\}$ (here it is important that the space $\mathbb{R}^d$ is Euclidean). Clearly, these two straight lines intersect at $x$. On the other hand, the straight lines through the pairs of points $\{e_2, e_1+e_2 \}$ and $\{-e_2, e_1 -e_2 \}$, are parallel. This contradiction completes the proof. Corollary 1. Let $U \subset \mathbb{R}^d$ be a bounded starlike domain with respect to $0$, let $\partial U$ be a $C^1$-smooth closed $(d-1)$-dimensional manifold, and let $M \subset \mathbb{R}^d$ be a compact set. Assume that $|P^u_M(x)| \leqslant k$ for all $x \in \mathbb{R}^d$. Then $\operatorname{conv} M=\operatorname{conv}_k M$. Proof. By Theorem 2
$$
\begin{equation*}
\operatorname{ri} (\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv} ( P^u_M(x) ),
\end{equation*}
\notag
$$
and therefore, since $|P^u_M(x)| \leqslant k$, we have
$$
\begin{equation*}
\overline{\operatorname{conv} M}=\overline{\operatorname{ri} (\operatorname{conv} M)} \subset \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv} ( P^u_M(x) )} \subset \overline{\operatorname{conv}_k M}.
\end{equation*}
\notag
$$
The reverse inclusion is clear. So we have shown that $\overline{\operatorname{conv} M}=\overline{\operatorname{conv}_k M}$. The set $M$ is compact, hence the sets $\operatorname{conv} M$ and $\operatorname{conv}_k M$ are closed. Therefore, $\operatorname{conv} M=\operatorname{conv}_k M$.
This proves Corollary 1.
§ 4. Results for convex domain Let $U$ be a bounded convex domain in a Banach space $X$, let $0 \in U$, and let $p_u$ be the Minkowski functional of $U$. It is clear that there exist $c_1$, $c_2 > 0$ such that
$$
\begin{equation*}
c_1 \| x \| \leqslant p_u(x) \leqslant c_2 \| x \| \quad \forall x \in X.
\end{equation*}
\notag
$$
We recall (see [26], § 2.4.7) that a convex domain $U$ is smooth if the Minkowski functional $p_u$ is Gâteaux differentiable on $X \setminus \{ 0 \}$, that is, for each $x \in X \setminus \{ 0 \}$ there exists a continuous linear functional $p'_u(x;\cdot) \in X^*$ such that for any $h \in X$ the limit
$$
\begin{equation}
\lim_{t \to 0}\frac{p_u(x+th)-p_u(x)}{t}=p'_u(x;h)
\end{equation}
\tag{15}
$$
exists. The modulus of smoothness of a convex body $U$ is defined by
$$
\begin{equation*}
\omega_u(t)=\sup\biggl\{ \frac{1}{2}(p_u(x+y)+p_u(x-y)-2)\colon x \in \partial U, \, y \in X, \, p_u(y)=t \biggr\}.
\end{equation*}
\notag
$$
A convex body $U$ is said to be uniformly smooth if its Minkowski functional $p_u$ is uniformly Fréchet differentiable on $U$, that is, (15) holds uniformly for $x \in \partial U$, $h \in U$. It is known (see [26], § 2.4.7) that the modulus of smoothness of a uniformly smooth body $U$ satisfies $\omega_u(t)=o(t)$ as $t \searrow 0$. Let $x \in \partial U$ and let $\Pi_x$ be the support hyperplane to $U$ at $x$. Then $p_u(x+y)-1 \geqslant 0$ and $p_u(x-y)-1 \geqslant 0$ for all $y \in \Pi_x-x$. Hence
$$
\begin{equation}
\sigma(t) := \sup\bigl\{ p_u(x+y)-1\colon x \in \partial U, \, y \in \Pi_x-x, \, p_u(y) \leqslant t \bigr\}=o(t), \qquad t \to 0.
\end{equation}
\tag{16}
$$
For $x \in \partial U$ let $f_x \in S_{X^*}$ be the support functional to $U$ at $x$. We claim that, for each $\varepsilon \in (0,c_1)$, there exists a positive $\delta=o(\varepsilon)$, $\varepsilon \searrow 0$, such that
$$
\begin{equation}
\bigl\{ z \in X\colon f_x(z) \leqslant f_x(x)-\delta \bigr\} \cap \overline{B}(x, \varepsilon) \subset U \cap \overline{B}(x, \varepsilon) \quad \forall\, x \in \partial U.
\end{equation}
\tag{17}
$$
Let $\varepsilon $ and $\delta $ be some positive numbers. We represent each point $z \in B(x, \varepsilon)$ such that $f_x(z) \leqslant f_x(x)-\delta$ as follows:
$$
\begin{equation*}
z=(1-\tau)x+y, \quad\text{where}\quad \tau \geqslant \frac{\delta}{f_x(x)}\quad\text{and} \quad y \in (\Pi_x-x).
\end{equation*}
\notag
$$
Now by (16) we have
$$
\begin{equation*}
p_u(z)=p_u((1-\tau)x+y)=(1-\tau) p_u\biggl(x+\frac{y}{1-\tau}\biggr) \leqslant 1-\tau+ \sigma(p_u(y))
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
\tau=\tau p_u(x) \leqslant \tau p_u\biggl(x-\frac{y}{\tau}\biggr)=p_u(\tau x-y)=p_u(x-z) \leqslant c_2 \| x-z \| \leqslant c_2 \varepsilon.
\end{equation*}
\notag
$$
Since $z \in B(x, \varepsilon)$, we have $\| y \| \leqslant \| z-x\|+\tau \| x \| \leqslant \varepsilon+\tau/ c_1$, and therefore
$$
\begin{equation}
p_u(y) \leqslant c_2 \| y \| \leqslant c_2 \varepsilon+\tau \frac{c_2}{c_1} \leqslant \biggl(c_2+\frac{c_2^2}{c_1}\biggr) \varepsilon =: C \varepsilon.
\end{equation}
\tag{18}
$$
It is clear that for each $\varepsilon > 0$ one can choose $\delta=\delta(\varepsilon) > 0$ so that $c_1 \delta > \sigma(C \varepsilon)$ and $\delta=o(\varepsilon)$ as $\varepsilon \searrow 0$. By (18) and since $f_x(x) \leqslant \| x \| \leqslant 1/c_1$, for $\delta= \delta(\varepsilon)$ we have
$$
\begin{equation*}
p_u(z) \leqslant 1-\tau+\sigma(p_u(y)) \leqslant 1-\frac{\delta}{f_x(x)}+\sigma(C\varepsilon) \leqslant 1-c_1 \delta+\sigma(C \varepsilon) < 1.
\end{equation*}
\notag
$$
Therefore, $z \in U$. This proves (17). Note that in each smooth convex body a finite-dimensional space is uniformly smooth. Theorem 3. Let $U \subset \mathbb{R}^d$ be a bounded smooth convex domain such that $0 \in U$, and let $M \subset \mathbb{R}^d$ be closed. Then
$$
\begin{equation*}
\operatorname{ri}(\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x)) \quad\textit{and}\quad \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}.
\end{equation*}
\notag
$$
Proof. 1) First let us show that $\operatorname{ri}(\operatorname{conv} M)\,{\subset} \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x))$. Consider the case when $\operatorname{aff} M= \mathbb{R}^d$. Then
$$
\begin{equation*}
\operatorname{ri} (\operatorname{conv} M)=\operatorname{int} (\operatorname{conv} M).
\end{equation*}
\notag
$$
Let $a \in \operatorname{ri} (\operatorname{conv} M) \setminus M$. Then there exist points $a_1, \dots, a_\nu \in M$ and $\delta \in (0,1)$ such that
$$
\begin{equation}
B(a, 2\delta) \subset \operatorname{conv}(\{a_1, \dots a_\nu\})\quad\text{and} \quad B(a, 2\delta) \cap M=\varnothing.
\end{equation}
\tag{19}
$$
We claim that there exists a point $x_* \,{\in}\, \mathbb{R}^d$ such that $a \!\in\! \operatorname{conv}(P_M(x_*))$. By Lemma 3 the map $P_M^u$ is upper semicontinuous. Now, in view of Theorem 1, in order to show that the required point $x_*$ exists it suffices to find $R > 0$ such that
$$
\begin{equation*}
a \notin \operatorname{conv}(\{x, P_M^u(x)\}) \quad \forall\, x \in S(0,R).
\end{equation*}
\notag
$$
We set $R_a :=\max_{i=1, \dots, \nu}\| a-a_i \|$. Now we recall the definitions of the unit outward normal vector $N_{\partial V}(y)$ and the half-space $\Pi_Y(y,t)$ introduced in the proof of Theorem 2 (see (7)). Since $U$ is uniformly smooth, we have (17). Hence there exists $\lambda_0 > 0$ such that, for all $\lambda \geqslant \lambda_0$ and all $y \in \lambda \partial U$,
$$
\begin{equation}
\Pi_{\lambda \partial U}(y, \delta) \cap \overline{B}(y, R_a +1 ) \subset U(0,\lambda) \cap \overline{B}(y, R_a +1 ).
\end{equation}
\tag{20}
$$
Let $R > 0$ be such that
$$
\begin{equation*}
p_u( a-x) > \lambda_0+\sup_{z \in B(a,\delta)} p_u(a-z) \quad \forall\, x \in S(0,R).
\end{equation*}
\notag
$$
We show that
$$
\begin{equation}
B(a, \delta) \cap \overline{U}(x, d_u(x,M))=\varnothing \quad \forall\, x \in S(0,R).
\end{equation}
\tag{21}
$$
Assume the contrary. Let $b \in B(a,\delta) \cap \overline{U}(x, d_u(x,M))$. It is clear that in this case $U(x, p_u(b-x)) \cap M=\varnothing$. Set $U' := U(x, p_u(b-x))$. Since
$$
\begin{equation*}
p_u(b-x) \geqslant p_u( a-x)-p_u(a-b) > \lambda_0,
\end{equation*}
\notag
$$
from (20) we obtain
$$
\begin{equation*}
\Pi_{\partial U'} (b, \delta) \cap \overline{B}(b,R_a +1) \subset U' \cap \overline{B}(b, R_a +1).
\end{equation*}
\notag
$$
The inclusion $\overline{B}(a,R_a) \subset \overline{B}(b, R_a+1)$ is straightforward, hence
$$
\begin{equation}
\Pi_{\partial U'} (b, \delta) \cap \overline{B}(a,R_a) \subset U' \cap \overline{B}(a, R_a).
\end{equation}
\tag{22}
$$
We set $c := b-\delta N_{\partial U'}(b) \in \Pi_{\partial U'}(b,\delta)$. Since $b \in B(a,\delta)$, we find that
$$
\begin{equation*}
c \in B(a,2\delta) \subset \operatorname{conv}( \{a_1, \dots, a_\nu\}).
\end{equation*}
\notag
$$
Consequently, the half-space $\Pi_{\partial U'} (b, \delta)$ contains the point $c$ and one of the points $a_1, \dots, a_\nu$. We can assume without loss of generality that $a_1 \in \Pi_{\partial U'} (b, \delta)$. It is clear from the definition of $R_a$ that $a_1 \in \overline{B}(a,R_a)$. Hence
$$
\begin{equation}
a_1 \in \Pi_{\partial U'} (b, \delta) \cap \overline{B}(a,R_a).
\end{equation}
\tag{23}
$$
On the other hand $a_1 \in M$, and so $a_1 \notin U'$, which implies that
$$
\begin{equation}
a_1 \notin U' \cap \overline{B}(a, R_a).
\end{equation}
\tag{24}
$$
It is clear that (23) and (24) are in contradiction to (22). This therefore proves (21). As a result, $B(a,\delta) \cap \operatorname{conv}( \{ x\} \cup P_M^u(x) )=\varnothing$ for all $x \in S(0,R)$. This completes the case when $\operatorname{aff} M=\mathbb{R}^d$.
The case when $\operatorname{aff} M \neq \mathbb{R}^d$ can be reduced to $\operatorname{aff} M=\mathbb{R}^d$ as in Theorem 2.
2) We claim that $\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M^u(x))}$. By $1)$ we have $\overline{\operatorname{conv} M}=\overline{\operatorname{ri}(\operatorname{conv} M)} \subset \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}$. It is clear that the reverse inclusion also holds, since $\operatorname{conv}(P^u_M(x) ) \subset \operatorname{conv} M$ for all $x \in \mathbb{R}^d$.
Theorem 3 is proved. Remark 2. For a closed unbounded set $M$, in general $\operatorname{conv} M \neq \overline{\operatorname{conv} M} $ and therefore $\operatorname{conv} M \neq \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}$, in contrast to the conclusion of Theorem 2. Corollary 2. Let $U \subset \mathbb{R}^d$ be a bounded smooth convex domain and $M \subset \mathbb{R}^d$ be a closed set with at most $k$-valued metric projection $P^u_M$. Then $\overline{\operatorname{conv} M}=\overline{\operatorname{conv}_k M}$. The proof is similar to the proof of Corollary 1.
§ 5. Infinite-dimensional results Theorem 4. Let $X$ be a Banach space, $U \subset X$ be a bounded uniformly smooth convex domain, and let $M \subset X$ be boundedly compact. Then
$$
\begin{equation*}
\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))}.
\end{equation*}
\notag
$$
Proof. Let $p_u$ be the Minkowski functional of $U$, and let $c_1$ and $c_2$, $c_1 < c_2$, be positive numbers such that
$$
\begin{equation}
c_1 \| x \| \leqslant p_u(x) \leqslant c_2 \| x \| \quad \forall x \in X.
\end{equation}
\tag{25}
$$
We assume without loss of generality that $c_2=1$ (for otherwise we can replace the norm $\| \cdot \|$ by $c_1 \| \cdot \|$). Let $a_1, \dots, a_\nu \in M$, $A := \{a_1, \dots, a_\nu\}$, and let ${a \in \operatorname{ri}(\operatorname{conv} A)}$. We claim that $a$ can be approximated arbitrarily well by points in $\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))$. Given $Y \subset X$ and $t > 0$, we set
$$
\begin{equation}
Y_t := \bigl\{x \in X\colon d(x, Y) \leqslant t \bigr\}\quad\text{and} \quad Y^u_t := \bigl\{x \in X\colon d_u(x, Y) \leqslant t \bigr\}.
\end{equation}
\tag{26}
$$
Fix $\varepsilon \in (0,1/2)$. Since $U$ is uniformly smooth, (17) holds, and therefore here exists $\lambda_0 > 0$ such that for all $\lambda \geqslant \lambda_0$, all $y \in \lambda \partial U$ and any support functional $f_y \in S_{X^*}$ to $\lambda U$ at $y$ we have
$$
\begin{equation}
\bigl\{z\,{\in}\, X\colon f_y(z) \,{\leqslant}\, f_y(y)-\varepsilon \bigr\} \cap \overline{B}(y, \operatorname{diam}(A)+1) \,{\subset}\, U(0,\lambda) \cap \overline{B}(y, \operatorname{diam}(A)+1).
\end{equation}
\tag{27}
$$
Let $r > 0$ be such that
$$
\begin{equation*}
d_u(x, A_{2\varepsilon} \cup \{ a \}) \geqslant \lambda_0 \quad \forall\, x \in X \setminus B(0, r).
\end{equation*}
\notag
$$
We claim that
$$
\begin{equation}
a \notin \overline{U}(x, d_u(x,A_{2\varepsilon})) \quad \forall\, x \in X \setminus B(0,r).
\end{equation}
\tag{28}
$$
Assume the contrary. Then
$$
\begin{equation}
U(x, p_u(a-x)) \subset U(x, d_u(x, A_{2\varepsilon})).
\end{equation}
\tag{29}
$$
We denote the norm-one support functional to the domain $\overline{U}(x, p_u(a-x))$ at the point $a$ by $f_a$. For $t \in \mathbb{R}$ we set
$$
\begin{equation*}
\Pi(a, t)=\bigl\{z \in X\colon f_a(z) \leqslant f_a(a)-t \bigr\}.
\end{equation*}
\notag
$$
Hence by (27) we have
$$
\begin{equation}
\Pi(a, \varepsilon) \cap \overline{B}(a, \operatorname{diam}(A)+1) \subset U(x, p_u(a-x)) \cap \overline{B}(a, \operatorname{diam}(A)+ 1).
\end{equation}
\tag{30}
$$
It is clear that some points of $A$ also lie in the half-space $\Pi(a, 0)$. We can assume without loss of generality that $a_1 \in \Pi(a, 0)$, that is, $f_a(a_1) \leqslant f_a(a)$. Hence there exists $b_1 \in B(a_1, 2\varepsilon)$ such that $f_a(b_1) \leqslant f_a(a)-\varepsilon$. Since
$$
\begin{equation*}
\| b_1-a\| \leqslant \| b_1-a_1\|+\| a_1-a \| \leqslant 2\varepsilon+\operatorname{diam}(A) < 1+\operatorname{diam}(A),
\end{equation*}
\notag
$$
we have $b_1 \in \Pi(a, \varepsilon) \cap \overline{B}(a, \operatorname{diam}(A)+1)$. On the other hand $b_1 \notin U(x, p_u(a-x))$, since $A_{2\varepsilon} \cap U(x, p_u(a-x))= \varnothing$ in view of inclusion (29). But the existence of such $b_1$ contradicts (30). This therefore proves (28). Since $c_2=1$, from the definition (26) we obtain $A_{2\varepsilon} \subset A_{2c_2\varepsilon}^u= A_{2\varepsilon}^u$. Now (28) implies that
$$
\begin{equation}
a \notin \overline{U}(x, d_u(x,A^u_{2\varepsilon})) \quad \forall\, x \in X \setminus B(0,r).
\end{equation}
\tag{31}
$$
Next, from the definition of $P_M^u$ it is clear that the supremum
$$
\begin{equation}
\sup\bigl\{ \| y \|\colon y \in P_M^u(x), \,\| x \| \leqslant r \bigr\} =: R
\end{equation}
\tag{32}
$$
is finite. Since $M$ is boundedly compact, there exists an $\varepsilon$-net $x_1, \dots, x_m \in X$ for ${\overline{B}(0, R) \cap M}$. Let $L := \operatorname{span}\{x_1, \dots, x_m\}$. For $x \in L$ we set
$$
\begin{equation*}
D(x) := \overline{U}(x, d_u(x,M^u_{2\varepsilon})) \cap L
\end{equation*}
\notag
$$
and consider the set-valued mapping
$$
\begin{equation*}
\Phi\colon L \to 2^L \setminus \{\varnothing\}, \qquad x \mapsto P^u_{D(x)} \circ P_M^u(x).
\end{equation*}
\notag
$$
We claim that $\Phi$ is upper semicontinuous. To prove this it suffices to show that if $x_n \to x$ as $n\to\infty$, $z_n \in \Phi(x_n)$, and $z_n \to z$ as $n\to\infty$, then $z \in \Phi(x)$. By the definition of $\Phi$ there exist $y_n \in M$ such that
$$
\begin{equation*}
y_n \in P_M^u(x_n)\quad\text{and} \quad z_n \in P^u_{D(x_n)}(y_n).
\end{equation*}
\notag
$$
Passing to a subsequence we can assume that $y_n \to y$ as $n\to\infty$ and, in addition, $y \in P^u_M(x)$, since the map $P_M^u$ is upper semicontinuous. The sets $D(x_n)$ tend to $D(x)$ in the Hausdorff metric, because the function $d_u(\, \cdot \,, M^u_{2\varepsilon})$ is continuous on $X$. Therefore,
$$
\begin{equation*}
z \in D(x)\quad\text{and} \quad p_u(z_n-y_n)=d_u(y_n, D(x_n)) \to d_u(y,D(x)),\qquad n\to\infty.
\end{equation*}
\notag
$$
On the other hand $p_u(z_n-y_n) \to p_u(z-y)$ as $n\to\infty$. Hence $z \in P^u_{D(x)}(y)$, which implies that $z \in \Phi(x)$, as required.
Now consider the map
$$
\begin{equation*}
F\colon L \to \operatorname{Conv}(L), \qquad x \mapsto \operatorname{conv} \Phi(x).
\end{equation*}
\notag
$$
It is upper semicontinuous because $\Phi$ is. Note that for all $x \in L$
$$
\begin{equation*}
\operatorname{conv}( \{ x\} \cup F(x)) \subset D(x)=\overline{U}(x, d_u(x, M^u_{2\varepsilon})) \cap L \subset \overline{U}(x, d_u(x, A^u_{2\varepsilon})),
\end{equation*}
\notag
$$
so that by (31)
$$
\begin{equation*}
a \notin \operatorname{conv}( \{ x\} \cup F(x)) \qquad \forall\, x \in L \setminus B(0,r).
\end{equation*}
\notag
$$
Now by Lemma 2 there exists a point $x_* \in L \cap \overline{B}(0,r)$ such that
$$
\begin{equation*}
a \in F(x_*)=\operatorname{conv} \Phi(x_*).
\end{equation*}
\notag
$$
Let $z_1, \dots, z_n \in \Phi(x_*)$ be points such that $a=\sum_{i=1}^n \lambda_i z_i$ for $ \lambda_i \geqslant 0$, $i=1,\dots,n$, $\sum_{i=1}^n{\lambda_i}=1$. Since $\Phi(x_*)=P^u_{D(x_*)} \circ P_M^u(x_*)$, there exist $y_i \in P_M^u(x_*)$ such that $z_i \in P^u_{D(x_*)}(y_i)$.
For each $i \in 1, \dots, n$ and all $z \in D(x_*)$, $\widetilde{z}_i \in P^u_L(y_i)$, we have
$$
\begin{equation}
p_u(z_i-y_i) \leqslant p_u(z-y_i) \leqslant p_u(z-\widetilde{z}_i)+p_u(\widetilde{z}_i-y_i).
\end{equation}
\tag{33}
$$
It is clear that
$$
\begin{equation}
p_u(\widetilde{z}_i-y_i)=d_u(y_i, L) \leqslant c_2 d(y_i, L)=d(y_i, L) \leqslant \varepsilon,
\end{equation}
\tag{34}
$$
because $y_i \in M \cap B(0,R)$ in view of (32) and since $L$ contains an $\varepsilon$-net for ${M \cap B(0,R)}$. Assume that $\widetilde{z}_i \notin D(x_*)$, that is, $p_u( \widetilde{z}_i-x_*) > d_u(x_*, M_{2\varepsilon}^u)$. Hence, for
$$
\begin{equation*}
z=x_*+d_u(x_*,M^u_{2\varepsilon})\frac{\widetilde{z}_i-x_*}{p_u(\widetilde{z}_i-x_*)}
\end{equation*}
\notag
$$
we have the estimate
$$
\begin{equation*}
\begin{aligned} \, p_u(\widetilde{z}_i-z) &=p_u(\widetilde{z}_i-x_*)-p_u(z-x_*)= p_u(\widetilde{z}_i-x_*)-d_u(x_*, M^u_{2\varepsilon}) \\ &\leqslant p_u(\widetilde{z}_i-y_i)+p_u( y_i-x_*)-d_u(x_*,M^u_{2\varepsilon}) \\ &\leqslant \varepsilon+d_u(x_*, M)-d_u(x_*, M^u_{2\varepsilon}) \leqslant 3\varepsilon. \end{aligned}
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation}
p_u(z-\widetilde{z}_i) \leqslant c_2\| z- \widetilde{z}_i\|=c_2\| \widetilde{z}_i-z \| \leqslant \frac{c_2}{c_1}p_u(\widetilde{z}_i- z) \leqslant \frac{3 \varepsilon}{c_1}.
\end{equation}
\tag{35}
$$
Now from (33)– (35) we obtain
$$
\begin{equation*}
\| z_i-y_i\| \leqslant \frac{p_u(z_i-y_i)}{c_1} \leqslant \frac{p_u(z- \widetilde{z}_i)}{c_1}+\frac{p_u(\widetilde{z}_i-y_i)}{c_1} \leqslant \frac{3\varepsilon}{c_1^2}+\frac{\varepsilon}{c_1} \leqslant \frac{4\varepsilon}{c_1^2}.
\end{equation*}
\notag
$$
If $\widetilde{z}_i \in D(x_*)$, then
$$
\begin{equation*}
p_u(z_i-y_i) =p_u(\widetilde{z}_i-y_i) \leqslant \varepsilon \quad \Longrightarrow \quad \| z_i-y_i \| \leqslant p_u(z_i-y_i) \leqslant \frac{\varepsilon}{c_1} < \frac{4\varepsilon}{c_1^2}.
\end{equation*}
\notag
$$
So, for $b=\sum_{i=1}^n \lambda_i y_i \in \operatorname{conv} P_M^u(x_*)$ we have
$$
\begin{equation*}
\| a-b\|=\biggl\| \sum_{i=1}^n \lambda_i (z_i-y_i)\biggr\| < \frac{4\varepsilon}{c_1^2} \sum_{i=1}^n \lambda_i=\frac{4\varepsilon}{c_1^2}.
\end{equation*}
\notag
$$
Since $\varepsilon$ can be chosen arbitrarily small, $a \in \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}$, and therefore $\operatorname{conv} M \subset \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}$. The reverse inclusion $\overline{\operatorname{conv} M} \supset \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}$ is clear.
Theorem 4 is proved. Corollary 3. Let $X$ be a Banach space, $U \subset X$ be a bounded uniformly smooth convex domain and $M \subset X$ be a compact set with at most $k$-valued metric projection $P_M^u$. Then $\overline{\operatorname{conv} M}=\overline{\operatorname{conv}_k M}$. Proof. By Theorem 4, $\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))} \subset \overline{\operatorname{conv}_k M}$. The reverse inclusion $\overline{\operatorname{conv}_k M} \subset \overline{\operatorname{conv} M}$ is clear.
Corollary 3 is proved. Theorem 5. Let $X$ be a Banach space, $U \subset X$ be a bounded smooth convex domain and $M \subset X$ be a compact set. Then $\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}$. Proof. Let $p_u$ be the Minkowski functional of $U$. Let $c_1$ and $c_2$, $c_1 < c_2$, be the fixed positive numbers from (25). We can assume without loss of generality that $c_2 < 1$. Let $a_1, \dots, a_\nu \in M$, $A := \{a_1, \dots, a_\nu\}$, and let $a\,{\in} \operatorname{ri}(\operatorname{conv} A)$. We claim that $a$ can be approximated arbitrarily well by $\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))$. Since $M$ is compact, there exists an $\varepsilon$-net $x_1, \dots, x_m \in X$ for $M$. Set
$$
\begin{equation*}
L := \operatorname{span}( A \cup \{x_1, \dots, x_m\}).
\end{equation*}
\notag
$$
It is clear that $V := U \cap L$ is a uniformly smooth convex domain in $L$, and it follows from the proof of Theorem 4 that there exits $r > 0$ such that
$$
\begin{equation*}
a \notin \overline{V}(x, d_u(x,A_{2\varepsilon}^u)) \quad \forall\, x \in L \setminus B(0,r)
\end{equation*}
\notag
$$
(see (31) and above). For $x \in L$ we set
$$
\begin{equation*}
D(x) := \overline{B}(x, d_u(x,M_{2\varepsilon}^u)) \cap L
\end{equation*}
\notag
$$
and consider the set-valued mapping
$$
\begin{equation*}
\Phi\colon L \to 2^L \setminus \{ \varnothing \}, \qquad x \mapsto P^u_{D(x)} \circ P_M^u(x).
\end{equation*}
\notag
$$
Arguing as in Theorem 4, it can be shown that there exist $x_* \in B(0,r) \cap L$ and $b \in \operatorname{conv} P_M^u(x_*)$ such that $\| a- b\| < 4\varepsilon/c_1^2$. It follows that $\overline{\operatorname{conv} M} \subset \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}$. The reverse inclusion $\overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))} \subset \overline{\operatorname{conv} M}$ is clear.
The theorem is proved. Corollary 4. Let $X$ be a Banach space, $U \subset X$ be a smooth convex domain and $M \subset X$ be a compact set. 1) If the metric projection $P^u_M$ is at most $k$-valued, then $\overline{\operatorname{conv} M}=\operatorname{conv} M=\operatorname{conv}_k M$. 2) If $\operatorname{conv} M$ is not closed, then for each $k$ there exists a point $x_k \in X$ such that $|P_M^u(x_k)| \geqslant k$. Proof. 1) By Theorem 4
$$
\begin{equation*}
\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))} \subset \overline{\operatorname{conv}_k M}.
\end{equation*}
\notag
$$
We claim that the set $\operatorname{conv}_k M$ is closed. Indeed, if $x_n\,{\in} \operatorname{conv}_k M$ and $x_n \to x$ as ${n\to\infty}$, then for any natural $n$ there exist $y_{n}^i \in M$ (some of which can repeat) and $\lambda_n^{i} \geqslant 0$, $i=1, \dots, k$, $\sum_{i=1}^k \lambda_n^{i}=1$, such that
$$
\begin{equation*}
x_n=\sum_{i=1}^k \lambda_n^{i} y_n^{i}.
\end{equation*}
\notag
$$
Since $M$ is compact, there exists an increasing subsequence of indices $\{n_j\}_{j=1}^\infty \subset \mathbb{N}$ such that $y_{n_j}^{i} \to y^{i}$ and $\lambda_{n_j}^{i} \to \lambda^i$ as $j \to \infty$, for all $i=1, \dots, k$. It is clear that $x=\sum_{i=1}^k \lambda^i y^i \in \operatorname{conv}_k M$, and thus the set $\operatorname{conv}_k M$ is closed. Hence ${\overline{\operatorname{conv} M} \subset \operatorname{conv}_k M}$. The inclusion $\operatorname{conv}_k M \subset \operatorname{conv} M$ is clear. The last two inclusions imply that $\overline{\operatorname{conv} M}=\operatorname{conv} M= \operatorname{conv}_k M$.
Assertion 1) is immediate from 2).
Corollary 4 is proved.
§ 6. Results for balls in Banach spaces If as $U$ we take the unit ball $B(0,1)$ in a Banach space $X$, then $P_M^u$ is the ordinary metric projection $P_M$. Now the following result is immediate from Theorems 3–5. Theorem 6. Let $X$ be a Banach space, and let $M \subset X$. Then the following assertions hold. 1) If $X$ is a smooth finite-dimensional space and $M$ is boundedly compact, then $\operatorname{ri}(\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x))$. 2) If $X$ is a uniformly smooth space and $M$ is boundedly compact, then $\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x))}$. 3) If $X$ is smooth and $M$ is compact, then $\overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x))}$. Of course, similar results can also be derived from other theorems and corollaries presented in § 4 and § 5. The author is greatly indebted to P. A. Borodin for stating the problem and making valuable comments, and also to A. R. Alimov and I. G. Tsar’kov for helpful discussions.
|
|
|
Bibliography
|
|
|
1. |
N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets”, Dokl. Akad. Nauk SSSR, 118:1 (1958), 17–19 (Russian) |
2. |
V. L. Klee, Jr., “A characterization of convex sets”, Amer. Math. Monthly, 56:4 (1949), 247–249 |
3. |
V. L. Klee, “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Maths. Soc., 74 (1953), 10–43 |
4. |
V. I. Berdyshev, “On Chebyshev sets”, Dokl. Akad. Nauk Az. SSR, 22:9 (1966), 3–5 (Russian) |
5. |
A. Brøndsted, “Convex sets and Chebyshev sets. II”, Math. Scand., 18 (1966), 5–15 |
6. |
A. L. Brown, “Chebyshev sets and the shapes of convex bodies”, Methods of functional analysis in approximation theory (Bombay 1985), Internat. Schriftenreihe Numer. Math., 76, Birkhäuser, Basel, 1986, 97–121 |
7. |
A. L. Brown, “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. London Math. Soc. (3), 41:2 (1980), 297–339 |
8. |
L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Uspekhi Mat. Nauk, 28:6(174) (1973), 3–66 ; English transl. in Russian Math. Surveys, 28:6 (1973), 1–66 |
9. |
V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Uspekhi Mat. Nauk, 51:6(312) (1996), 125–188 ; English transl. in Russian Math. Surveys, 51:6 (1996), 1127–1190 |
10. |
I. G. Tsar'kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces”, Mat. Zametki, 36:1 (1984), 73–87 ; English transl. in Math. Notes, 36:1 (1984), 530–537 |
11. |
I. G. Tsar'kov, “Compact and weakly compact Tchebysheff sets in normed linear spaces”, Proceeding of the All-Union school on the theory of functions, Tr. Mat. Inst. Steklov., 189, Nauka, Moscow, 1989, 169–184 ; English transl. in Proc. Steklov Inst. Math., 189 (1990), 199–215 |
12. |
A. R. Alimov, “Is every Chebyshev set convex?”, Mat. Prosveshchenie, Ser. 3, 2, Moscow Center for Continuous Mathematical Education, Moscow, 1998, 155–172 (Russian) |
13. |
A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 19–27 ; English transl. in Funct. Anal. Appl., 35:3 (2001), 176–182 |
14. |
L. N. H. Bunt, Bijdrage tot de theorie der convexe puntverzamelingen, Proefschrifft Groningen, Noord-Hollandsche Uitgevers Maatschappij, Amsterdam, 1934, 108 pp. |
15. |
H. Mann, “Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik”, Monatsh. Math. Phys., 42:1 (1935), 417–424 |
16. |
T. Motzkin, “Sur quelques propriétés caractéristiques des ensembles convexes”, Atti Accad. Naz. Lincei Rend. (6), 21 (1935), 562–567 |
17. |
T. Motzkin, “Sur quelques propriétés caractéristiques des ensembles
bornés non convexes”, Atti Accad. Naz. Lincei Rend. (6), 21 (1935), 773–779 |
18. |
C. Carathéodory, “Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 193–217 |
19. |
W. Fenchel, “Über Krümmung und Windung geschlossener Raumkurven”, Math. Ann., 101:1 (1929), 238–252 |
20. |
I. Bárány and R. Karasev, “Notes about the Carathéodory number”, Discrete Comput. Geom., 48:3 (2012), 783–792 |
21. |
A. A. Flerov, “Sets with at most two-valued metric projection on a normed plane”, Mat. Zametki, 101:2 (2017), 286–301 ; English transl. in Math. Notes, 101:2 (2017), 352–364 |
22. |
O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev and V. M. Kharlamov, Elementary topology. Problem textbook, 3d ed., Moscow Center for Continuous Mathematical Education, Moscow, 2010, 446 pp.; English transl., Amer. Math. Soc., Providence, RI, 2008, xx+400 pp. |
23. |
A. Cellina, “Approximation of set valued functions and fixed point theorems”, Ann. Mat. Pura Appl. (4), 82 (1969), 17–24 |
24. |
M. L. Gromov, “On simplexes inscribed in a hypersurface”, Mat. Zametki, 5:1 (1969), 81–89 ; English transl. in Math. Notes, 5:1 (1969), 52–56 |
25. |
A. Brøndsted, “Convex sets and Chebyshev sets”, Math. Scand., 17 (1965), 5–16 |
26. |
Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp. |
Citation:
K. S. Shklyaev, “The convex hull and the Carathéodory number of a set in terms of the metric projection operator”, Sb. Math., 213:10 (2022), 1470–1486
Linking options:
https://www.mathnet.ru/eng/sm9742https://doi.org/10.4213/sm9742e https://www.mathnet.ru/eng/sm/v213/i10/p167
|
|