Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 9, Pages 1222–1249
DOI: https://doi.org/10.4213/sm9697e
(Mi sm9697)
 

This article is cited in 3 scientific papers (total in 3 papers)

Distribution of Korobov-Hlawka sequences

A. A. Illarionov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia
References:
Abstract: Let $a_1, \dots, a_s$ be integers and $N$ be a positive integer. Korobov (1959) and Hlawka (1962) proposed to use the points
$$ x^{(k)}=\biggl(\biggl\{\frac{a_1 k}N\biggr\}, \dots, \biggl\{\frac{a_1 k}N\biggr\}\biggr), \qquad k=1,\dots, N, $$
as nodes of multidimensional quadrature formulae. We obtain some new results related to the distribution of the sequence $K_N(a)=\{x^{(1)},\dots,x^{(N)}\}$. In particular, we prove that
$$ \frac{\ln^{s-1} N}{N \ln\ln N} \underset{s}\ll D(K_N(a)) \underset{s}\ll \frac{\ln^{s-1} N}{N} \ln\ln N $$
for ‘almost all’ $a\in (\mathbb Z_N^*)^s$, where $D(K_N(a))$ is the discrepancy of the sequence $K_N(a)$ from the uniform distribution and $\mathbb Z^*_N$ is the reduced system of residues modulo $N$.
Bibliography: 18 titles.
Keywords: uniform distribution, discrepancy from the uniform distribution, Korobov-Hlawka sequences, Korobov grids.
Received: 24.11.2021
Bibliographic databases:
Document Type: Article
MSC: Primary 11K38; Secondary 41A55
Language: English
Original paper language: Russian

§ 1. Introduction

Let $N$ be a positive integer, and let $a_1, \dots, a_s$ be integers. For the approximate calculation of multiple integrals by means of quadrature formulae on the unit $s$-dimensional cube $[0, 1]^s$, Korobov [1] and Hlawka [2] proposed (independently) to use grids of the form

$$ \begin{equation*} K_N(a)=\biggl\{ \biggl( \biggl\{\frac{a_1k}{N}\biggr\},\dots, \biggl\{\frac{a_sk}{N}\biggr\} \biggr)\colon k=1,\dots,N\biggr\}. \end{equation*} \notag $$
This idea turned out to be fruitful. It gave rise to a whole direction at the intersection of number theory and computational mathematics (see [3]–[5]).

Recall that the discrepancy $D(X)$ of a finite set $X\subset [0,1)^s$ from the uniform distribution is defined by

$$ \begin{equation*} D(X)=\sup_{\Pi} \biggl| \frac{\# (X\cap \Pi)}{\# X}-\operatorname{meas} \Pi \biggr|, \end{equation*} \notag $$
where the least upper bound is taken over all parallelepipeds $\Pi=[x_1,x_1') \times \dots \times [x_s,x_s')$ such that $0\leqslant x_j < x_j'<1$, $j=1,\dots,s$. Here and below $\# X$ denotes the cardinality of the set $X$.

From the theoretic and practical points of view, it is reasonable to construct sequences with small discrepancy (see [3]–[5]). If $s=1$ and $\operatorname{\textrm{gcd}} (a_1,N)=1$, then $D(K_N(a_1))=1/N$.

The study of the quantity $D(K_N(a))$ becomes much more complicated for $s\geqslant 2$. The well-known upper bound

$$ \begin{equation*} \mathfrak D^{(s)}_N \equiv \min_{a\in \mathbb Z_N^s} D(K_N(a)) \underset{s}\ll \frac{\ln^s N}{ N} \end{equation*} \notag $$
was obtained by Korobov [3] for any prime number $N$ and by Niederreiter [6] for any integer $N>1$. Larcher [7] proved that
$$ \begin{equation*} \mathfrak D^{(2)}_N \ll \frac{\ln N}{\varphi(N)} \ln\ln N , \end{equation*} \notag $$
where $\varphi(N)$ is the Euler function. The best upper bound was obtained by Bykovskii [8]. It has the form
$$ \begin{equation*} \mathfrak D^{(s)}_N \underset{s}\ll \frac{\ln ^{s-1} N}{N} \ln\ln N. \end{equation*} \notag $$

There are reasons to suppose that

$$ \begin{equation*} \mathfrak D^{(s)}_N \underset{s}\gg \frac{\ln ^{s-1} N}{N}. \end{equation*} \notag $$
For $s=2$ this inequality follows from Schmidt’s theorem (see [9]). For $s>2$ the best lower bound follows from the results of [10]. It has the form
$$ \begin{equation*} \mathfrak D^{(s)}_N\underset{s}\gg\frac{(\ln N)^{(s-1)/2+\eta(s)}}{N} \quad \text{for } s\geqslant 3, \end{equation*} \notag $$
where $\eta(s)$ is a positive constant depending only on $s$.

For any $x\in \mathbb Z^s$ we set

$$ \begin{equation*} H(x)=\prod_{i=1}^s \max\{1,|x_i|\}, \end{equation*} \notag $$
and for every $a\in \mathbb Z^s\setminus\{0\}$ we set
$$ \begin{equation*} q_N(a)=\min_{x} H(x), \end{equation*} \notag $$
where the minimum is taken over all nontrivial solutions $x\in \mathbb Z^s\setminus\{0\}$ of the congruence
$$ \begin{equation} a_1 x_1+\dots+a_s x_s \equiv 0 \pmod N. \end{equation} \tag{1.1} $$

The parameter $q_N(a)$ was introduced by Bakhvalov [11] and Hlawka [2]. It characterizes the ‘irregularity’ of the sequence $K_N(a)$. For example, the following bounds hold (see [5], § 5.1):

$$ \begin{equation} \frac{1}{q_N(a)} \underset{s}\ll D(K(a,N)) \underset{s}\ll \frac{\ln^s N}{q_N(a)}. \end{equation} \tag{1.2} $$
Therefore, it is reasonable to choose points $a\in \mathbb Z^s$ with large $q_N(a)$.

By Minkowski’s convex body theorem $q_N(a) \leqslant N/2$ (see [5], § 5.1).

We take any number $a_1\in \mathbb Z$ such that $\operatorname{\textrm{gcd}} (a_1,N)=1$. Let $a_1/N=[b_0;b_1,\dots,b_k]$ be the expansion of the rational number $a_1/N$ in a continued fraction (the $b_j$ are the partial quotients). As is well known (see [5], Theorem 5.17),

$$ \begin{equation} q_N(a) \asymp N \Bigl( \max_{1\leqslant i\leqslant k} b_i \Bigr)^{-1} \quad\text{for } a=(a_1,1). \end{equation} \tag{1.3} $$
Korobov, as well as other authors, stated repeatedly the conjecture that for some absolute constant $C$ and any positive integer $N$ there exists $a_1$, $\operatorname{\textrm{gcd}} (a_1, q)=1$, such that $b_j \leqslant C$ for all $j$. This is widely known as ‘Zaremba’s conjecture’ and has yet to be proved.

If Zaremba’s conjecture is true, then, according to (1.3),

$$ \begin{equation*} \max_{a\in \mathbb Z^2} q_N(a) \gg N. \end{equation*} \notag $$
However, the best known bound has the form
$$ \begin{equation*} \max_{a\in \mathbb Z^s} q_N(a) \underset{s}\gg \frac{N}{\ln^{s-1} N} \qquad (s\geqslant 2). \end{equation*} \notag $$
It was proved by Bakhvalov [11] and (independently) Hlawka [12] for any prime number $N$ and by Zaremba [13] for an arbitrary integer $N>1$.

The main results of our paper are as follows.

Let $\mathbb Z_N$ be the complete system and $\mathbb Z^*_N$ be the reduced system of residues modulo $N$.

Theorem 1. Let $s \geqslant 3$, $N \in \mathbb N$, $\lambda \in [1,+\infty)$, $N > 1$ and $\ln \lambda \ll_s \ln\ln N$. Then

$$ \begin{equation} \frac{1}{\varphi^s(N)} \cdot \#\biggl\{a\in (\mathbb Z_N^*)^s\colon \frac{N}{\lambda \ln^{s-1} N} \leqslant q_N(a) \leqslant\lambda \frac{N}{\ln^{s-1} N} \biggr\}=1+O_s\biggl(\frac{1}{\lambda}\biggr). \end{equation} \tag{1.4} $$

Corollary 1. Let the conditions of Theorem 1 hold. Then

$$ \begin{equation*} \frac{1}{\varphi^s(N)} \cdot \#\biggl\{a\in (\mathbb Z_N^*)^s\colon D(K_N(a)) \leqslant\frac{\ln^{s-1} N}{\lambda N} \biggr\} \underset{s}\ll \frac{1}{\lambda}. \end{equation*} \notag $$

Theorem 2. For any integer $s\geqslant 3$ there is a positive constant $C(s)$ depending only on $s$ such that, if $N\in \mathbb N$ and $\lambda\in [1,+\infty)$, where $N\geqslant 3$ and $\ln\lambda \ll_s \ln\ln N$, then

$$ \begin{equation} \frac{1}{\varphi^s(N)}\cdot \#\biggl\{ a\in (\mathbb Z_N^*)^s\colon D(K_N(a)) \geqslant \lambda C(s) \frac{\ln^{s-1} N}{N} \ln\ln N \biggr\}\underset{s}\ll \frac{1}{\lambda \ln \ln N}. \end{equation} \tag{1.5} $$

The proofs of Theorems 1 and 2 use Markov’s and Chebyshev’s inequalities. Corollary 1 follows from Theorem 1 and relations (1.2). In the proof of Theorem 2, Bykovskii’s inequality for $D(K_N(a))$ (see [8], Theorem 1, or bound (5.3) below) also plays an important role.

Theorem 2 and Corollary 1 imply that

$$ \begin{equation*} \frac{\ln^{s-1} N}{N\ln\ln N} \underset{s}\ll D(K_N(a)) \underset{s}\ll \frac{\ln^{s-1} N}{N} \ln\ln N \end{equation*} \notag $$
for ‘almost all’ $a\in (\mathbb Z_N^*)^s$.

Remark 1. In the proofs given below the condition $s>2$ is essential. Let $s=2$. Then (1.5) follows from the results of [14]. By (1.3) and [15], Theorem 1,

$$ \begin{equation*} \frac{1}{\varphi(N)} \cdot \#\biggl\{a_1\in \mathbb Z_N^*\colon q_N(a_1,1) \geqslant \lambda\frac{N}{ \ln^{s-1} N} \biggr\} \ll \frac{\ln N}{\lambda} e^{-c\lambda}, \end{equation*} \notag $$
where $c$ is some absolute constant. Moreover, it follows from [14] that
$$ \begin{equation*} \frac{1}{\varphi(N)} \cdot \#\biggl\{a\in \mathbb Z_N^*\colon q_N(a,1) \leqslant\frac{N}{\lambda \ln^{s-1} N} \biggr\} \ll \frac{1}{\lambda}. \end{equation*} \notag $$

Remark 2. Theorem 2 was proved by this author in [16] for any prime integer $N$. The case of composite $N$ has turned out to be much more complicated.

Remark 3. For $\alpha=(\alpha_1,\dots,\alpha_s) \in \mathbb R^s$ and $n\in \mathbb N$ write

$$ \begin{equation*} \widetilde K_n(\alpha)=\{(\{k\alpha_1\}, \dots, \{k\alpha_s\} )\colon k=1,\dots,n\}. \end{equation*} \notag $$
If $\alpha_j=a_j/n$, then $\widetilde K_n(\alpha)=K_n(a)$. Beck [17] proved that
$$ \begin{equation*} (\ln N)^s \ll \max_{1\leqslant n \leqslant N} n D(\widetilde K_n(\alpha)) \underset{s}\ll (\ln N)^s (\ln\ln N)^{1+\epsilon} \qquad (\epsilon>0) \end{equation*} \notag $$
for almost all $\alpha \in \mathbb R^s$.

The rest of the paper consists of four sections. In § 2 we derive asymptotic formulae for the number of solutions of some congruences. These results are used in § 3 to investigate the distribution of solutions of congruence (1.1). The proof of Theorem 1 is presented in § 4 and the proof of Theorem 2 in § 5.

§ 2. Number of solutions of some congruences

The aim of this section is to prove Corollaries 2 and 3.

We use the following notation. The expression

$$ \begin{equation*} f(x) \ll g(x) \quad (\text{or } f(x)=O(g(x))) \quad \text{for } x\in X \end{equation*} \notag $$
means that there exists a positive absolute constant $C$ such that $|f(x)| \leqslant C \cdot g(x)$ for all $x\in X$. If $C$ depends on a parameter $\theta$, then we write $f(x) \ll_{\theta} g(x)$ (or $f(x)=O_\theta(g(x))$). The notation $f\asymp g$ means that $f\ll g\ll f$.

For any $n\in \mathbb Z$ and $m \in \mathbb N$ we set

$$ \begin{equation*} \delta_m(n)=\begin{cases} 1 & \text{for } n\equiv 0 \pmod m, \\ 0 & \text{for } n\not\equiv 0 \pmod m. \end{cases} \end{equation*} \notag $$
Let $e(z)=e^{2\pi i z}$ for all $z\in \mathbb C$. The following formulae are well known:
$$ \begin{equation} \sum_{n\in \mathbb Z_N} e\biggl(\frac{mn}{N}\biggr)=N \delta_N(m), \end{equation} \tag{2.1} $$
$$ \begin{equation} \sum_{n\in \mathbb Z_N^*} e\biggl(\frac{mn}{N}\biggr) =N \sum_{d\mid N} \frac{\mu(d)}{d}\delta_{N/d}(m). \end{equation} \tag{2.2} $$
Here and below $\mu(d)$ denotes the Möbius function and $N\in \mathbb N$, $N\geqslant 3$.

If $\Omega\subset \mathbb R^s$, then

$$ \begin{equation*} \mathop{{\sum}'}_{x\in \Omega}(\dots) \end{equation*} \notag $$
is a sum over all $x\in \mathbb Z^s\cap \Omega$ such that $x\neq 0$.

We denote by $a\cdot x$ the standard inner product of the vectors $a$ and $x$.

Lemma 1 (see [8], Lemma 10). Let $s\geqslant 2$, $l\in \mathbb Z$ and $P_1,\dots,P_s \in [1,N]$. Then

$$ \begin{equation*} \sum_{a\in (\mathbb Z_N^*)^s} \sum_{1\leqslant x_1\leqslant P_1}\dotsb \sum_{1\leqslant x_s\leqslant P_s} \delta_N(a\cdot x-l) \leqslant\varphi^{s-1}(N) P_1\dotsb P_s. \end{equation*} \notag $$

Lemma 2. If $P\in \{1,2,\dots, N\}$, $c\in \mathbb Z$, then

$$ \begin{equation*} \sum_{P\leqslant t < 2P} \delta_N(t+c) =\frac{P}{N}+\mathop{{\sum}'}_{-N/2< k \leqslant N/2} F(k) e\biggl(\frac{-ck}{N}\biggr), \end{equation*} \notag $$
where
$$ \begin{equation*} F(k)=\sum_{P\leqslant n < 2P} e\biggl(\frac{-kn}{N}\biggr), \qquad |F(k)| \leqslant\frac{1}{2|k|}. \end{equation*} \notag $$

Proof. We define the function
$$ \begin{equation*} \chi\colon\{P,P+1,\dots, P+N-1\} \to \{0,1\} \end{equation*} \notag $$
by
$$ \begin{equation*} \chi(t)=\begin{cases} 1 & \text{if } t\in [P,2P), \\ 0 & \text{if } t \not\in [P,2P). \end{cases} \end{equation*} \notag $$
Using the discrete Fourier transform we obtain
$$ \begin{equation*} \chi(t)=\sum_{-N/2 < k\leqslant N/2 } F(k) e\biggl(\frac{kt}N\biggr), \end{equation*} \notag $$
where
$$ \begin{equation*} F(k)=\frac{1}{N} \sum_{P\leqslant n< P+N} \chi(n) e\biggl(-\frac{kn}N\biggr) =\frac{1}{N} \sum_{P\leqslant n< 2P} e\biggl(-\frac{kn}N\biggr). \end{equation*} \notag $$
It can readily be seen that
$$ \begin{equation*} F(0) = \frac{P}{N} \end{equation*} \notag $$
and
$$ \begin{equation*} |F(k)| =\frac{1}{N}\biggl|\frac{1- e(-kP/N)}{1-e(-k/N)}\biggr| =\frac{1}{N}\biggl|\frac{\sin(\pi P k/N)}{\sin(\pi k/N)} \biggr| \leqslant\frac{1}{2|k|}, \qquad k\neq 0. \end{equation*} \notag $$
Therefore,
$$ \begin{equation*} \begin{aligned} \, \sum_{t=P}^{2P-1} \delta_N(t+c) &=\sum_{t=P}^{P+N-1}\chi(t) \delta_N(t+c) =\sum_{t=P}^{P+N-1} \sum_{-N/2 < k\leqslant N/2 } F(k) e\biggl(\frac{kt}{N}\biggr) \delta_N(t+c) \\ &=\sum_{-N/2<k\leqslant N/2} F(k)\sum_{t\in \mathbb Z_N} e\biggl(\frac{kt}{N}\biggr) \delta_N(t+c) \\ &=\sum_{-N/2 < k\leqslant N/2 } F(k) e\biggl(\frac{-ck}{N}\biggr) =\frac{P}{N}+\mathop{{\sum}'}_{-N/2 < k\leqslant N/2 } F(k) e\biggl(\frac{-kc}{N}\biggr). \end{aligned} \end{equation*} \notag $$
This completes the proof of Lemma 2.

For every $s\geqslant 2$, $l\in \mathbb Z$ and $P=(P_1,\dots,P_s)\in \mathbb N^s$ set

$$ \begin{equation*} \mathcal A_N^{(s)}(P;l)=\sum_{a\in (\mathbb Z_N^*)^s} \sum_{P_1\leqslant x_1< 2 P_1}\dotsb \sum_{P_s\leqslant x_s< 2 P_s} \delta_N(a\cdot x-l). \end{equation*} \notag $$
In other words, $\mathcal A_N^{(s)}(P;l)$ is the number of solutions $(a,x)\in (\mathbb Z_N^*)^s\,{\times}\, \mathbb Z^s$ of the problem
$$ \begin{equation*} a_1x_1+\dots+a_s x_s \equiv l \pmod N, \qquad P_j\leqslant x_j< 2P_j, \quad j=1,\dots, s. \end{equation*} \notag $$

Let $\tau(N)=\sum_{d\mid N} 1$ be the number of positive integer divisors of $N$.

Lemma 3. Let $s\geqslant 2$, $l\in \mathbb Z$, $P=(P_1,\dots,P_s) \in \mathbb N^s$ and $P_j\leqslant N$, $j=1,\dots, s$. Then

$$ \begin{equation} \mathcal A_N^{(s)}(P;l)=\frac{\varphi^s(N)}{N} P_1\dotsb P_s \biggl(1+O_s\biggl(\frac{N\tau^2(N) \ln N}{\varphi(N) \max\{P_1,\dots,P_s\}}\biggr)\biggr). \end{equation} \tag{2.3} $$

Proof. Without loss of generality assume that $P_1\,{=}\max\{P_1,\dots, P_s\}$.

Let $s=2$. It is obvious that

$$ \begin{equation*} \mathcal A_N^{(2)}(P;l)=\sum_{a_1,a_2\in \mathbb Z_N^*} \sum_{P_1\leqslant x_1 < 2P_1}\sum_{P_2\leqslant x_2 < 2P_2} \delta_N(x_1+a_2x_2 -a_1 l). \end{equation*} \notag $$
By Lemma 2
$$ \begin{equation*} \sum_{P_1 \leqslant x_1 < 2P_1} \delta_N(x_1+a_2 x_2 -l a_1) =\frac{P_1}{N}+\mathop{{\sum}'}_{-N/2 < k\leqslant N/2 } F(k) e\biggl(\frac{k(-a_2 x_2+a_1 l)}{N}\biggr), \end{equation*} \notag $$
where $|F(k)| \leqslant 1/|2k|$. Thus,
$$ \begin{equation} \mathcal A_N^{(2)}(P;l)=\frac{\varphi^2(N)}{N} P_1P_2+S, \end{equation} \tag{2.4} $$
where
$$ \begin{equation*} S=\sum_{P_2\leqslant x_2< 2P_2} \sum_{a_1,a_2\in \mathbb Z_N^*} \mathop{{\sum}'}_{-N/2 < k\leqslant N/2 } F(k) e\biggl(\frac{-ka_2 x_2}{N}\biggr)e\biggl(\frac{k a_1 l}{N}\biggr). \end{equation*} \notag $$
Summing over $a_2\in \mathbb Z_N^*$ we have (see (2.2))
$$ \begin{equation*} S=N \sum_{P_2\leqslant x_2< 2P_2}\sum_{a_1\in \mathbb Z_N^*} \sum_{d\mid N} \frac{\mu(d)}{d} \mathop{{\sum}'}_{-N/2 < k\leqslant N/2 } F(k) \delta_{N/d}(kx_2) e\biggl(\frac{k a_1 l}{N}\biggr). \end{equation*} \notag $$
Taking the inequalities $|F(k)|\leqslant |2k|^{-1}$, $|e(z)|\leqslant 1$ and $|\mu(d)|\leqslant 1$ into account we arrive at the bound
$$ \begin{equation*} |S| \leqslant N\varphi(N) \sum_{d\mid N} \frac{1}{d}\sum_{P_2\leqslant x_2< 2P_2} \mathop{{\sum}'}_{-N/2 < k\leqslant N/2 } \frac{\delta_{N/d}(k x_2)}{2|k|}. \end{equation*} \notag $$
If $r=\operatorname{\textrm{gcd}} (x_2, N/d)$, then
$$ \begin{equation*} \mathop{{\sum}'}_{-N/2 < k\leqslant N/2 } \frac{\delta_{N/d}(k x_2)}{2|k|} \leqslant\sum_{1\leqslant k \leqslant N/2} \frac{\delta_{N/dr}(k)}{k} \leqslant\frac{dr}{N} \sum_{1\leqslant k'\leqslant dr/2} \frac{1}{k'} \ll \frac{dr}{N}\ln N. \end{equation*} \notag $$
Hence
$$ \begin{equation*} \begin{aligned} \, S &\ll \varphi(N) \ln N \sum_{d\mid N} \sum_{P_2\leqslant x_2 < 2 P_2} \operatorname{\textrm{gcd}} \biggl(x_2, \frac Nd\biggr) \\ &\ll\varphi(N) \ln N \sum_{d\mid N} \sum_{r\mid (N/d)} r \sum_{P_2\leqslant x_2 < 2 P_2} \delta_r(x_2) \\ &\ll\varphi(N) \ln N \sum_{d\mid N} \sum_{r\mid (N/d)} P_2 \leqslant\varphi(N) P_2 \tau^2(N)\ln N. \end{aligned} \end{equation*} \notag $$
Using the last inequality and (2.4) we conclude that
$$ \begin{equation} \mathcal A_N^{(2)}(P;l)=\frac{\varphi^2(N)}{N} P_1P_2 +O\bigl( \varphi(N) P_2 \tau^2(N)\ln N\bigr). \end{equation} \tag{2.5} $$

Now let $s\geqslant 3$. It is clear that

$$ \begin{equation*} \mathcal A_N^{(s)}(P;l)=\sum_{a_3,\dots, a_s \in \mathbb Z_N^*} \sum_{\substack{P_j\leqslant x_j < 2 P_j\\ 3\leqslant j\leqslant s}} \mathcal A_N^{(2)}(P_1,P_2; l -a_3 x_3 -\dots-a_s x_s). \end{equation*} \notag $$
Taking (2.5) into account we obtain
$$ \begin{equation*} \mathcal A_N^{(s)}(P;l)=\biggl(\frac{\varphi^2(N)}{N} P_1P_2 +O\bigl( \varphi(N) P_2 \tau^2(N)\ln N\bigr)\biggr) \varphi^{s-2}(N) P_3\dotsb P_s. \end{equation*} \notag $$

This completes the proof of Lemma 3.

Corollary 2. Let $s\geqslant 2$, $l\in \mathbb Z$, $P=(P_1,\dots,P_s) \in \mathbb N^s$ and

$$ \begin{equation*} \tau^2(N) (\ln N)^s \ln\ln N \underset{s}\ll \max\{P_1,\dots,P_s\} \leqslant N. \end{equation*} \notag $$
Then
$$ \begin{equation*} \mathcal A_N^{(s)}(P;l)=\frac{\varphi^s(N)}{N} P_1\dotsb P_s \bigl(1+O_s(\ln^{-(s-1)} N) \bigr). \end{equation*} \notag $$

Corollary 2 follows from Lemma 3 and the well-known bound

$$ \begin{equation} N \ll \varphi(N) \ln\ln N. \end{equation} \tag{2.6} $$

We take arbitrary $f,g\in \mathbb Z$, $P=(P_1,\dots,P_s)\in \mathbb N^s$ and $Q=(Q_1,\dots,Q_s)\in \mathbb N^s$. Let $\mathcal B^{(s)}_N(P,Q;f,g)$ be the number of tuples $(a,x,y) \in (\mathbb Z_N^*)^s\times \mathbb Z^s\times \mathbb Z^s$ such that

$$ \begin{equation} a_1 x_1+\dots+a_s x_s \equiv f \pmod N, \qquad a_1 y_1+\dots+a_s y_s \equiv g \pmod N, \end{equation} \tag{2.7} $$
$$ \begin{equation} P_j\leqslant x_j < 2P_j, \quad Q_j\leqslant y_j < 2Q_j, \qquad j=1,\dots,s, \end{equation} \tag{2.8} $$
$$ \begin{equation} \text{the vectors $x$ and $y$ are linearly independent over $\mathbb R$.} \end{equation} \tag{2.9} $$

Our aim is to obtain an asymptotic formula for $\mathcal B^{(s)}_N(P,Q;f,g)$.

Let $\widehat{\mathcal B}^{(s)}_N(P,Q;f,g)$ be the number of tuples $(a,x,y) \in (\mathbb Z_N^*)^s\times \mathbb Z^s\times \mathbb Z^s$ satisfying (2.7), (2.8) and the additional condition

$$ \begin{equation} x_i y_j \neq x_j y_i \quad \text{for all } 1\leqslant i < j \leqslant s. \end{equation} \tag{2.10} $$

Lemma 4. Let $f,g\in \mathbb Z$, $P,Q \in \mathbb N^3$ and $P_j,Q_j\leqslant N$, $j=1,2,3$. Then

$$ \begin{equation*} \mathcal B^{(3)}_N(P,Q;f,g)-\widehat{\mathcal B}^{(3)}_N(P,Q;f,g) \ll \frac{P_1P_2P_3Q_1Q_2Q_3}{\min\{P_1,P_2,P_3,Q_1,Q_2,Q_3\}}\, \varphi(N)\tau(N)\ln N. \end{equation*} \notag $$

Proof. It suffices to prove that the number of tuples $(a,x,y) \in (\mathbb Z_N^*)^3\times \mathbb Z^3\times \mathbb Z^3$ satisfying (2.7)(2.9) (for $s=3$) and the condition
$$ \begin{equation} x_1y_2=x_2 y_1 \end{equation} \tag{2.11} $$
does not exceed
$$ \begin{equation*} O\biggl(\frac{P_1P_2P_3Q_1Q_2Q_3}{\min\{P_1,P_2,P_3,Q_1,Q_2,Q_3\}}\, \varphi(N)\tau(N)\ln N\biggr). \end{equation*} \notag $$

Let

$$ \begin{equation} r_x=\frac{\operatorname{\textrm{gcd}} (x_1,x_2)}{\operatorname{\textrm{gcd}} (x_1,x_2,y_1,y_2)}\quad\text{and} \quad r_y=\frac{\operatorname{\textrm{gcd}} (y_1,y_2)}{\operatorname{\textrm{gcd}} (x_1,x_2,y_1,y_2)}. \end{equation} \tag{2.12} $$
Then $\operatorname{\textrm{gcd}} (r_x,r_y)=1$. By (2.11) and (2.12),
$$ \begin{equation} \frac{x_j}{r_x}=\frac{y_j}{r_y}, \qquad j=1,2. \end{equation} \tag{2.13} $$
Using (2.13) and (2.7) we obtain
$$ \begin{equation} a_3 (r_y x_3-r_x y_3) \equiv l \pmod N, \qquad P_3 \leqslant x_3 < 2P_3, \quad Q_3 \leqslant y_3 < 2Q_3, \end{equation} \tag{2.14} $$
where $l=r_y f -r_x g$. Formulae (2.13) and (2.9) imply the inequality
$$ \begin{equation} x_3 r_y \neq y_3 r_x. \end{equation} \tag{2.15} $$

1. We take any coprime integers $r_x,r_y\in \mathbb N$. Let $G(r_x,r_y)$ be the number of tuples $(a_3,x_3,y_3)$ for which (2.14) and (2.15) hold. We claim that

$$ \begin{equation} G(r_x,r_y) \ll (r_y P_3+r_x Q_3) \tau(N) \min\{P_3,Q_3\}. \end{equation} \tag{2.16} $$
Without loss of generality assume that $P_3\geqslant Q_3$.

The number of $a_3\in \mathbb Z_N^*$ satisfying (2.14) for fixed $x_3$ and $y_3$ does not exceed $d=\operatorname{\textrm{gcd}} (N, r_yx_3 -r_x y_3)$. Hence

$$ \begin{equation*} G(r_x,r_y) \leqslant\sum_{d\mid N, \, d\leqslant 2 (r_yP_3+r_x Q_3)} d S(d), \end{equation*} \notag $$
where $S(d)$ is the number of pairs $(x,y)\in \mathbb Z^2$ such that
$$ \begin{equation} r_y x-r_x y \equiv 0 \pmod d, \qquad P_3 \leqslant x < 2P_3\quad\text{and} \quad Q_3 \leqslant y < 2Q_3. \end{equation} \tag{2.17} $$
Using (2.17) and the condition $\operatorname{\textrm{gcd}} (r_x,r_y)=1$ we see that $y$ is a multiple of $\operatorname{\textrm{gcd}} (r_y,d)$. Since $Q_3 \leqslant y < 2Q_3$, the number of such $y$ does not exceed $2Q_3 / \mathrm{\textrm{gcd}} (r_y,d)$. If $y$ is fixed, then the number of $x$ satisfying (2.17) does not exceed $P_3 \operatorname{\textrm{gcd}} (r_y,d) d^{-1}+1$. Therefore,
$$ \begin{equation*} S(d) \leqslant\frac{2Q_3}{\operatorname{\textrm{gcd}} (r_y,d)} \biggl(\frac{P_3}{d} \operatorname{\textrm{gcd}} (r_y,d)+1\biggr) =\frac{2P_3 Q_3}{d}+\frac{2Q_3}{\operatorname{\textrm{gcd}} (r_y,d))}. \end{equation*} \notag $$
Hence
$$ \begin{equation*} \begin{aligned} \, G(r_x,r_y) &\leqslant\sum_{\substack{d\mid N \\ d\leqslant 2 (r_yP_3+r_x Q_3)}} d \biggl(\frac{2P_3 Q_3}{d}+\frac{2Q_3}{\operatorname{\textrm{gcd}} (r_y,d))}\biggr) \\ &\leqslant 2P_3 Q_3 \tau(N)+4 (r_y P_3+r_x Q_3)\tau(N) Q_3. \end{aligned} \end{equation*} \notag $$
Inequality (2.16) is proved.

2. Let $L=L(a_3,x_3,y_3,r_x,r_y)$ be the number of tuples $(a_1,a_2, x_1,x_2,y_1,y_2) \in (\mathbb Z_N^*)^2\times \mathbb Z^4$ such that (2.7), (2.8), (2.11) and (2.12) hold for fixed $a_3$, $x_3$, $y_3$, $r_x$ and $r_y$.

By (2.13),

$$ \begin{equation*} x_j=r_x z_j, \quad y_j=r_y z_j, \qquad j=1,2, \end{equation*} \notag $$
where $z_1,z_2\in \mathbb Z$. Using (2.7) and (2.8) we obtain
$$ \begin{equation} r_x (a_1 z_1+a_2 z_2) \equiv f-a_3 x_3, \quad r_y (a_1 z_1+a_2 z_2) \equiv g-a_3 y_3 \pmod N \end{equation} \tag{2.18} $$
and
$$ \begin{equation} \max\biggl\{ \frac{P_j}{r_x}, \frac{Q_j}{r_y} \biggr\} \leqslant z_j < 2 \min\biggl\{ \frac{P_j}{r_x}, \frac{Q_j}{r_y} \biggr\}, \qquad j=1,2. \end{equation} \tag{2.19} $$
Since $\operatorname{\textrm{gcd}} (r_x,r_y)=1$, it follows that (2.18) implies the congruence
$$ \begin{equation} a_1 z_1+a_2 z_2 \equiv l_0 \pmod N, \end{equation} \tag{2.20} $$
where $l_0$ is some integer depending only on $r_x$, $r_y$, $f-a_3x_3$ and $g-a_3 y_3$. Thus, $L$ does not exceed the number of tuples $(a_1,a_2,z_1,z_2)\in (\mathbb Z_N^*)^2\times \mathbb Z^2$ satisfying conditions (2.19) and (2.20). Applying Lemma 1 we obtain
$$ \begin{equation} L \leqslant 4 \varphi(N) \min\biggl\{ \frac{P_1}{r_x}, \frac{Q_1}{r_y} \biggr\}\min\biggl\{ \frac{P_2}{r_x}, \frac{Q_2}{r_y} \biggr\} \leqslant 4\varphi(N) \frac{P_1 Q_2}{r_x r_y}. \end{equation} \tag{2.21} $$

3. Let $H(r_x,r_y)$ be the number of families $(a,x,y)$ such that (2.7)(2.9), (2.11), and (2.12) hold for fixed $r_x$ and $r_y$. Taking (2.16) and (2.21) into account we obtain

$$ \begin{equation} \begin{aligned} \, \notag H(r_x,r_y) &\ll G(r_x,r_y)\cdot L \ll (r_y P_3+r_x Q_3) \tau(N) \min\{P_3,Q_3\} \varphi(N) \frac{P_1 Q_2}{r_x r_y} \\ &=\tau(N) \varphi(N) \min\{P_3,Q_3\} P_1 Q_2 \biggl(\frac{P_3}{r_x}+\frac{Q_3}{r_y}\biggr). \end{aligned} \end{equation} \tag{2.22} $$

4. By (2.12) and (2.8),

$$ \begin{equation*} 1\leqslant r_x < R_x=2 \min\{P_1,P_2\}\quad\text{and} \quad 1\leqslant r_y < R_y=2 \min\{Q_1,Q_2\}. \end{equation*} \notag $$
It follows from these relations and (2.22) that the number of solutions of problem (2.7)(2.9), (2.11) does not exceed
$$ \begin{equation*} \begin{aligned} \, &\sum_{1\leqslant r_x < R_x} \sum_{1\leqslant r_y < R_y} H(r_x,r_y) \\ &\qquad\ll\tau(N) \varphi(N) \min\{P_3,Q_3\} P_1 Q_2 \sum_{1\leqslant r_x < R_x}\sum_{1\leqslant r_y<R_y} \biggl(\frac{P_3}{r_x}+\frac{Q_3}{r_y}\biggr) \\ &\qquad\ll\tau(N) \varphi(N) \min\{P_3,Q_3\} P_1 Q_2 (P_3 R_y \ln R_x+Q_3 R_x \ln R_y) \\ &\qquad\ll\tau(N) \varphi(N) \ln N \frac{P_1P_2P_3Q_1Q_2Q_3}{\min\{P_1,P_2,P_3,Q_1,Q_2,Q_3\}}. \end{aligned} \end{equation*} \notag $$

This completes the proof of Lemma 4.

Lemma 5. Let $f,g\in \mathbb Z$, $P,Q \in \mathbb N^3$, and $P_j,Q_j\leqslant N$, $j=1,2,3$. Then

$$ \begin{equation} \widehat{\mathcal B}^{(3)}_N(P,Q;f,g) =\frac{\varphi^3(N)}{N^2}P_1P_2P_3Q_1Q_2Q_3+O(\mathcal R^{(3)}_N(P;Q)), \end{equation} \tag{2.23} $$
where
$$ \begin{equation*} \mathcal R^{(3)}_N(P;Q)=N\tau^3(N) \ln^2 N \frac{P_1P_2P_3Q_1Q_2Q_3}{\min\{P_1,P_2,P_3,Q_1,Q_2,Q_3\}}. \end{equation*} \notag $$

Proof. Without loss of generality assume that $P_1 \leqslant Q_1$ and $P_2 \leqslant Q_2$.

For brevity we set $\widehat{\mathcal B}^{(3)}_N=\widehat{\mathcal B}^{(3)}_N(P,Q;f,g)$. It is clear that

$$ \begin{equation*} \widehat{\mathcal B}^{(3)}_N =\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \sum_{\substack{P_3\leqslant x_3 < 2P_3 \\ Q_3\leqslant y_3 < 2Q_3}} \sum_{a_1,a_2,a_3\in \mathbb Z_N^*}\delta_N(a\cdot x-f)\delta_N(a\cdot y-g)+O(\xi), \end{equation*} \notag $$
where
$$ \begin{equation*} \xi=\mathcal B^{(3)}_N(P,Q;f,g)-\widehat{\mathcal B}^{(3)}_N(P,Q;f,g), \end{equation*} \notag $$
and $\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} (\dots)$ is the sum over all $x_1,x_2,y_1,y_2 \in \mathbb Z$ satisfying the conditions
$$ \begin{equation*} P_j \leqslant x_j < 2P_j, \quad Q_j \leqslant y_j < 2Q_j\quad\text{and} \quad x_1y_2 \neq x_2 y_1. \end{equation*} \notag $$
Therefore,
$$ \begin{equation*} \begin{aligned} \, &\widehat{\mathcal B}^{(3)}_N=O(\xi) +\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \sum_{\substack{P_3\leqslant x_3 < 2P_3 \\ Q_3\leqslant y_3 < 2Q_3}} \sum_{a_1,a_2,a_3\in \mathbb Z_N^*} \delta_N (a_1 x_1+a_2 x_2+x_3-f a_3) \\ &\qquad\qquad\qquad\qquad\times \delta_N (a_1 y_1+a_2 y_2+y_3-g a_3). \end{aligned} \end{equation*} \notag $$
Using Lemma 2 we obtain the relation
$$ \begin{equation*} \begin{aligned} \, &\sum_{Q_3\leqslant y_3 < 2Q_3} \delta_N (a_1 y_1+a_2 y_2+y_3-g a_3) \\ &\qquad=\frac{Q_3}{N}+\mathop{{\sum}'}_{-N/2< k\leqslant N/2} F(k) e\biggl( \frac{k(g a_3-a_1 y_1-a_2 y_2)}{N}\biggr), \end{aligned} \end{equation*} \notag $$
where $|F(k)| \leqslant |2k|^{-1}$. Thus,
$$ \begin{equation} \begin{aligned} \, \notag &\widehat{\mathcal B}^{(3)}_N=\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \sum_{P_3\leqslant x_3 < 2P_3}\sum_{a_1,a_2,a_3\in \mathbb Z_N^*} \frac{Q_3}{N}\delta_N (a_1 x_1+a_2 x_2+x_3-f a_3) \\ &\qquad\qquad+S+O(\xi). \end{aligned} \end{equation} \tag{2.24} $$
Here
$$ \begin{equation*} S =\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \sum_{P_3\leqslant x_3 < 2P_3}\sum_{a_3 \in \mathbb Z_N^*} \mathop{{\sum}'}_{-N/2<k\leqslant N/2} F(k) S_1(k), \end{equation*} \notag $$
where
$$ \begin{equation*} S_1(k)=\sum_{a_1,a_2\in \mathbb Z_N^*} e\biggl( \frac{k(g a_3-a_1 y_1-a_2 y_2)}{N}\biggr) \delta_N (a_1 x_1+a_2 x_2+x_3-f a_3). \end{equation*} \notag $$
Given $x_1$ and $x_2$, the number of pairs $(y_1,y_2)\in \mathbb Z^2$ such that $x_1 y_2 \neq x_2 y_1 $ and $Q_j \leqslant y_j < 2Q_j$, $j=1,2$, is equal to $Q_1Q_2+O(\min\{Q_1,Q_2\})$. Hence
$$ \begin{equation*} \begin{aligned} \, &\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \sum_{P_3\leqslant x_3 < 2P_3}\sum_{a_1,a_2,a_3\in \mathbb Z_N^*} \frac{Q_3}{N}\delta_N (a_1 x_1+a_2 x_2+x_3-f a_3) \\ &\qquad=\mathcal A^{(3)}_N (P;f) \frac{Q_1Q_2Q_3}{N} \biggl( 1+O\biggl(\frac{1}{\max\{Q_1,Q_2\}}\biggr)\biggr). \end{aligned} \end{equation*} \notag $$
Using the last formula, relation (2.24), and Lemmas 3 and 4 we obtain
$$ \begin{equation} \widehat{\mathcal B}^{(3)}_N=\frac{\varphi^3(N)}{N^2} P_1P_2P_3 Q_1Q_2Q_3+S+O(\mathcal R^{(3)}_N(P,Q)). \end{equation} \tag{2.25} $$

It remains to estimate the quantity $S$. By (2.1),

$$ \begin{equation*} \delta_N (a_1 x_1+a_2 x_2+x_3-f a_3) =\frac{1}{N} \sum_{n\in \mathbb Z_N} e\biggl(\frac{a_1x_1+a_2x_2+x_3-f a_3}{N} n\biggr). \end{equation*} \notag $$
Thus,
$$ \begin{equation*} \begin{aligned} \, &S_1(k) =\frac{1}{N} \sum_{n\in \mathbb Z_N} \sum_{a_1,a_2\in \mathbb Z_N^*} e\biggl(\frac{x_3n+(g k-f n)a_3}{N}\biggr) \\ &\qquad\qquad\qquad\times e\biggl(\frac{x_1n-y_1k}{N}a_1\biggr)e\biggl(\frac{x_2n-y_2k}{N}a_2\biggr). \end{aligned} \end{equation*} \notag $$
We sum with respect to $a_1$ and $a_2$ using (2.2). Then we obtain
$$ \begin{equation*} \begin{aligned} \, S_1(k) &=N \sum_{n\in \mathbb Z_N}\sum_{d_1,d_2\mid N} \frac{\mu(d_1) \mu(d_2)}{d_1d_2} \, e\biggl(\frac{x_3n+(g k-f n)a_3}{N}\biggr) \\ &\qquad\qquad\times\delta_{N/d_1}(x_1n-y_1k)\delta_{N/d_2}(x_2n-y_2k). \end{aligned} \end{equation*} \notag $$
It follows from the last formula and the definition of $S$ that
$$ \begin{equation} S =N\sum_{d_1,d_2\mid N} \frac{\mu(d_1) \mu(d_2)}{d_1d_2} \mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \sum_{P_3\leqslant x_3 < 2P_3}\sum_{a_3 \in \mathbb Z_N^*} S_2, \end{equation} \tag{2.26} $$
where
$$ \begin{equation*} \begin{aligned} \, S_2&=\mathop{{\sum}'}_{-N/2< k \leqslant N/2} \sum_{n\in \mathbb Z_N} F(k)e\biggl(\frac{x_3n+(g k- f n)a_3}{N}\biggr) \\ &\qquad\qquad\times \delta_{N/d_1}(x_1n-y_1k)\delta_{N/d_2}(x_2n-y_2k). \end{aligned} \end{equation*} \notag $$

1. Let us estimate the sum $S_2$. If $\delta_{N/d_1}(x_1n-y_1k)\delta_{N/d_2}(x_2n-y_2k)=1$, then

$$ \begin{equation} d_1x_1 n \equiv d_1 y_1 k \pmod{N}\quad\text{and} \quad d_2x_2 n \equiv d_2 y_2 k \pmod{N}. \end{equation} \tag{2.27} $$
Therefore,
$$ \begin{equation} d_0 D k \equiv 0 \pmod N, \end{equation} \tag{2.28} $$
where
$$ \begin{equation*} D=x_1y_2-x_2y_1\quad\text{and} \quad d_0=\frac{d_1 d_2}{\operatorname{\textrm{gcd}} (d_1,d_2)}. \end{equation*} \notag $$
Let $\Lambda$ be the set of pairs $(n,k)\in \mathbb Z^2$ satisfying (2.27). This is a two-dimensional integer lattice. Therefore, there exist $\alpha, \gamma \in \mathbb N$ and $\beta\in \mathbb Z$ such that $(\alpha,0)$, $(\beta,\gamma)$ is a basis of $\Lambda$ (see [18], Ch. 1), that is,
$$ \begin{equation*} \Lambda=\{(\alpha n'+\beta k',\gamma k')\colon n',k'\in \mathbb Z\}. \end{equation*} \notag $$

Let $r=\operatorname{\textrm{gcd}} (N,d_1 x_1, d_2 x_2)$. Using (2.27) and (2.28) and the conditions $(\alpha,0)\in \Lambda$ and $(\beta,\gamma)\in \Lambda$ we obtain the relations

$$ \begin{equation*} \alpha=\frac{N}{r}\quad\text{and}\quad \gamma \text{ is a multiple of } \frac{N}{\operatorname{\textrm{gcd}} (N,d_0 D)}\,. \end{equation*} \notag $$
Thus,
$$ \begin{equation*} \begin{aligned} \, S_2 &=\mathop{{\sum}'}_{-N/(2\gamma)< k'\leqslant N/(2\gamma)}\sum_{n'=0}^{r-1} F(\gamma k') e\biggl(\frac{x_3(\alpha n'+\beta k')}{N}\biggr) e\biggl(\frac{g \gamma k' -f(\alpha n'+\beta k')}{N}a_3\biggr) \\ &=\mathop{{\sum}'}_{-N/(2\gamma)< k'\leqslant N/(2\gamma)} F(\gamma k') e\biggl(\frac{x_3\beta+(g\gamma -f\beta)a_3}{N} k'\biggr) \sum_{n'=0}^{r-1} e\biggl(\frac{x_3 -f a_3}{r}n'\biggr) \\ &=r \delta_r(x_3-f a_3)\mathop{{\sum}'}_{-N/(2\gamma)< k'\leqslant N/(2\gamma)} F(\gamma k') e\biggl(\frac{x_3\beta+(g\gamma -f\beta)a_3}{N} k'\biggr). \end{aligned} \end{equation*} \notag $$
Using the bounds
$$ \begin{equation*} |F(\gamma k')| \leqslant\frac{1}{2|\gamma k'|}, \qquad \gamma \geqslant \frac{N}{\operatorname{\textrm{gcd}} (N,d_0 D)}\quad\text{and} \quad |e(z)|\leqslant 1 \end{equation*} \notag $$
we obtain
$$ \begin{equation} |S_2| \leqslant r \delta_r(x_3-f a_3) \sum_{1\leqslant k' \leqslant N/(2\gamma)} \frac{1}{\gamma k'} \ll \frac{r \delta_r(x_3-f a_3)}{N} \operatorname{\textrm{gcd}} (N,d_0 D) \ln N. \end{equation} \tag{2.29} $$

2. Now let us estimate the sum $\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2}\sum_{x_3,a_3} S_2$. Consider the congruence $x_3 \!\equiv\! f a_3\! \pmod r$. For fixed $x_3$ the number of $a_3\in \mathbb Z_N$ such that $x_3\! \equiv\! f a_3\! \pmod r$ does not exceed $N \operatorname{\textrm{gcd}} (f,r)/r$. Moreover, $x_3$ is divisible by $\operatorname{\textrm{gcd}} (f,r)$. Hence

$$ \begin{equation*} \sum_{P_3\leqslant x_3 < 2P_3}\sum_{a_3 \in \mathbb Z_N^*} r\delta_r(x_3-f a_3) \ll N \operatorname{\textrm{gcd}} (f,r) \sum_{\substack{P_3\leqslant x_3 < 2P_3 \\ x_3 \equiv 0 \ (\operatorname{mod}{\operatorname{\textrm{gcd}} (f,r)})}} 1 \ll NP_3. \end{equation*} \notag $$
Taking (2.29) into account we have
$$ \begin{equation*} \sum_{P_3\leqslant x_3 < 2P_3}\sum_{a_3 \in \mathbb Z_N^*} S_2 \ll P_3 \operatorname{\textrm{gcd}} (N,d_0 D) \ln N. \end{equation*} \notag $$
Since $D=x_1 y_2 -x_2 y_1$ and $d_0=d_1 d_2 (\operatorname{\textrm{gcd}} (d_1,d_2))^{-1}$, $d_0\mid N$, it follows that
$$ \begin{equation} \begin{aligned} \, \notag &\mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2}\sum_{P_3\leqslant x_3 < 2P_3} \sum_{a_3 \in \mathbb Z_N^*} S_2 \ll P_3 d_0 \ln N \mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2} \operatorname{\textrm{gcd}} \biggl (\frac{N}{d_0}, x_1y_2-x_2 y_1\biggr) \\ &\qquad\leqslant P_3 d_0 \ln N \sum_{q\mid (N/d_0)} q S_3(q), \end{aligned} \end{equation} \tag{2.30} $$
where $S_3(q)$ is the number of tuples $(x_1,x_2,y_1,y_2)\in \mathbb Z^4$ for which
$$ \begin{equation} \begin{gathered} \, x_1 y_2 \equiv x_2 y_1 \pmod q, \qquad x_1y_2 \neq x_2 y_1, \\ P_j\leqslant x_j < 2P_j\quad\text{and} \quad Q_j\leqslant y_j < 2Q_j, \qquad j=1,2. \end{gathered} \end{equation} \tag{2.31} $$
We set
$$ \begin{equation} t=\frac{x_1 y_2 -x_2 y_1}{q}. \end{equation} \tag{2.32} $$
Then $t\in \mathbb Z$ and $1\leqslant |t| \leqslant 4(P_1Q_2+P_2 Q_1) q^{-1}$. Recall that $Q_j\geqslant P_j$, $j= 1,2$. Given $x_1$, $x_2$ and $t$, the number of pairs $(y_1,y_2)\in \mathbb Z^2$ satisfying (2.31) and (2.32) does not exceed
$$ \begin{equation*} O\biggl(\operatorname{\textrm{gcd}} (x_1,x_2) \min\biggl\{\frac{Q_1}{P_1}, \frac{Q_2}{P_2}\biggr\} \biggr). \end{equation*} \notag $$
Thus,
$$ \begin{equation*} \begin{aligned} \, S_3(q) &\ll \sum_{1\leqslant |t| \leqslant 4(P_1Q_2+P_2 Q_1) q^{-1}} \sum_{\substack{P_1 \leqslant x_1 < 2P_1 \\ P_2 \leqslant x_2 < 2P_2}} \operatorname{\textrm{gcd}} (x_1,x_2) \min\biggl\{\frac{Q_1}{P_1}, \frac{Q_2}{P_2}\biggr\} \\ &\ll\frac{P_1 Q_2+P_2 Q_1}{q}\min\biggl\{\frac{Q_1}{P_1}, \frac{Q_2}{P_2}\biggr\} \sum_{1\leqslant u \leqslant 2 \min\{P_1,P_2\}}\, \sum_{\substack{P_1 \leqslant x_1 < 2P_1 \\ P_2 \leqslant x_2 < 2P_2}} u\delta_u(x_1)\delta_u(x_2) \\ &\ll \frac{P_1 Q_2+P_2 Q_1}{q}\min\{Q_1 P_2,Q_2 P_1\} \sum_{1\leqslant u \leqslant 2N} \frac{1}{u} \ll \frac{P_1P_2 Q_1Q_2}{q}\ln N. \end{aligned} \end{equation*} \notag $$
Taking (2.30) into account we obtain
$$ \begin{equation*} \mathop{\widetilde{\sum}}_{x_1,x_2,y_1,y_2}\, \sum_{P_3\leqslant x_3 < 2P_3}\, \sum_{a_3 \in \mathbb Z_N^*} S_2 \ll P_1P_2P_3Q_1Q_2 d_0 \tau\biggl(\frac{N}{d_0}\biggr) \ln^2 N. \end{equation*} \notag $$

3. By the last bound, the condition $d_0=d_1 d_2/ \operatorname{\textrm{gcd}} (d_1,d_2)$ and (2.26),

$$ \begin{equation*} S \ll N\sum_{d_1,d_2 \mid N} \frac{P_1P_2P_3Q_1Q_2 d_0 \tau(N/d_0) \ln^2 N }{d_1 d_2} \leqslant N P_1P_2P_3 Q_1 Q_2 (\ln N)^2 \tau^3(N). \end{equation*} \notag $$
To complete the proof it remains to use (2.25).

Lemma 6. Let $s\geqslant 3$, $f,g \in \mathbb Z$, $P,Q\in \mathbb N^s$ and $P_j,Q_j \leqslant N$, $j=1,\dots,s$. Then

$$ \begin{equation*} \mathcal B^{(s)}_N(P,Q;f,g)=\frac{\varphi^s(N)}{N^2} P_1\dotsb P_sQ_1\dotsb Q_s +O_s(\mathcal R^{(s)}_N(P,Q)), \end{equation*} \notag $$
where
$$ \begin{equation*} \mathcal R^{(s)}_N(P,Q)=N\varphi^{s-3}(N) \frac{P_1\dotsb P_sQ_1\dotsb Q_s}{\min\{P_1,\dots, P_s,Q_1,\dots, Q_s\} } \tau^3(N) \ln^2 N. \end{equation*} \notag $$

Proof. It can readily be seen that
$$ \begin{equation*} 0\leqslant \mathcal B^{(s)}_N(P,Q;f,g)-\sum_{a_4,\dots,a_s\in \mathbb Z_N^*} \sum_{\substack{P_j \leqslant x_j < 2P_j \\ 4\leqslant j\leqslant s}}\, \sum_{\substack{Q_j \leqslant y_j< 2Q_j \\ 4\leqslant j\leqslant s}} \widehat{\mathcal B}^{(3)}_N(\widetilde P, \widetilde Q; \widetilde f, \widetilde g) \leqslant\xi_s, \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{gathered} \, \xi_s=\mathcal B^{(s)}_N (P,Q;f,g)-\widehat{\mathcal B}^{(s)}_N (P,Q;f,g), \qquad \widetilde P=(P_1,P_2,P_3), \qquad \widetilde Q=(Q_1,Q_2,Q_3), \\ \widetilde f=f-a_4x_4-\dots-a_sx_s\quad\text{and} \quad \widetilde g=g-a_4y_4-\dots-a_sy_s. \end{gathered} \end{equation*} \notag $$
Using Lemma 5 we obtain the asymptotic formula
$$ \begin{equation*} \begin{aligned} \, \mathcal B^{(s)}_N(P,Q;f,g) &=\frac{\varphi^s(N)}{N^2} P_1\dotsb P_sQ_1\dotsb Q_s \\ &\qquad+O\bigl(\mathcal R^{(3)}_N(\widetilde P, \widetilde Q) \varphi^{s-3}(N) P_4\dotsb P_s Q_4\dotsb Q_s\bigr)+O (\xi_s) \\ &=\frac{\varphi^s(N)}{N^2} P_1\dotsb P_sQ_1\dotsb Q_s+O(\xi_s)+O(\mathcal R^{(s)}_N( P, Q)). \end{aligned} \end{equation*} \notag $$

It remains to estimate $\xi_s$. We take any tuple $(a,x,y)$ satisfying (2.7)(2.9). If $x_iy_j=x_j y_i$, then there exists $l\in\{1,\dots,s\} \setminus\{i,j\}$ such that $x_i y_l \neq x_l y_j$. Therefore,

$$ \begin{equation*} \xi_s=\mathcal B^{(s)}_N (P,Q;f,g)-\widehat{\mathcal B}^{(s)}_N (P,Q;f,g) \leqslant\sum_{1\leqslant i < j\leqslant s} \sum_{\substack{1\leqslant l \leqslant s \\ l\neq i,j}} \mathcal C_{i,j,l}, \end{equation*} \notag $$
where $\mathcal C_{i,j,l}=\mathcal C_{i,j,l}(N;P,Q;f,g)$ is the number of families $(a,x,y)\in (\mathbb Z_N^*)^s \times \mathbb Z^s \times \mathbb Z^s$ for which (2.7) and (2.8) hold, $x_i y_j=x_jy_i$ and $x_i y_l \neq x_ly_i$. Clearly,
$$ \begin{equation*} \mathcal C_{i,j,l} \leqslant \sum_{\substack{a_k \in \mathbb Z_N^*,\, P_k\leqslant x_k < 2P_k,\, Q_k\leqslant y_k < 2Q_k \\ 1\leqslant k\leqslant s,\, k\neq i,j,k}} \bigl( \mathcal B^{(3)}_N( P', Q'; f', g') -\widehat{\mathcal B}^{(3)}_N( P', Q'; f', g')\bigr), \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{gathered} \, P'=(P_i,P_j,P_l), \qquad Q'=(Q_i,Q_j,Q_l), \\ f'=f- \sum_{k\neq i,j,l} a_k x_k\quad\text{and} \quad g'=g- \sum_{k\neq i,j,l} a_k y_k. \end{gathered} \end{equation*} \notag $$
It follows from Lemma 4 that
$$ \begin{equation*} \mathcal C_{i,j,l}\ll \frac{P_1\dotsb P_sQ_1\dotsb Q_s}{\min\{P_i,P_j,P_l,Q_i,Q_j,Q_l\}} \tau(N) \varphi^{s-2}(N) \ln N \leqslant\mathcal R_N^{(s)}(P,Q). \end{equation*} \notag $$
Hence $\xi_s \ll_s \mathcal R^{(s)}_N (P,Q)$.

This completes the proof of Lemma 6.

Using Lemma 6 and estimate (2.6) we obtain the following result.

Corollary 3. Let $s\geqslant 3$, $f,g \in \mathbb Z$, $P,Q\in \mathbb N^s$, and let

$$ \begin{equation*} \tau^3(N) \ln^{s+2} N \underset{s}\ll P_j \leqslant N\quad\textit{and} \quad\tau^3(N) \ln^{s+2} N \underset{s}\ll Q_j \leqslant N, \quad j=1,\dots, s. \end{equation*} \notag $$
Then
$$ \begin{equation*} \mathcal B^{(s)}_N(P,Q; f,g)=\frac{\varphi^s(N)}{N^2} P_1\dotsb P_sQ_1\dotsb Q_s \bigl(1+O_s(\ln^{-(s-1)} N)\bigr). \end{equation*} \notag $$

§ 3. Distribution of solutions of congruence (1.1)

The aim of this section is to prove Corollaries 4 and 5.

Let

$$ \begin{equation*} h=h(N,s)=\log_2(\tau^3(N)\ln^{s+2} N). \end{equation*} \notag $$
It follows from the well-known bound
$$ \begin{equation} \ln \tau(N) \ll \frac{\ln N}{\ln\ln N} \end{equation} \tag{3.1} $$
that
$$ \begin{equation} h \underset{s}\ll \frac{\ln N}{\ln\ln N}. \end{equation} \tag{3.2} $$

Let $\mathbb Z_+=\mathbb N\cup\{0\}$. For every $k=(k_1,\dots, k_s) \in \mathbb Z_+^s$ we set

$$ \begin{equation*} \begin{gathered} \, \Pi_k=\{x\in \mathbb Z^s\colon 2^{k_j} \leqslant |x_j| < 2^{k_j+1},\ j=1,\dots,s\}, \\ |k|_1=k_1+\dots+k_s, \qquad |k|_\infty=\max_{1\leqslant j \leqslant s} k_j\quad\text{and} \quad |k|_*=\min_{1\leqslant j \leqslant s} k_j. \end{gathered} \end{equation*} \notag $$
For every $R>1$ and $a\in \mathbb Z^s$ we set
$$ \begin{equation*} \begin{aligned} \, \Upsilon_N(R)&=\{k\in \mathbb Z_+^s\colon |k|_1 \leqslant\log_2 R, \ |k|_*\geqslant h\}, \\ V(a)&=\sum_{k\in \Upsilon_N(R)} \sum_{x\in \Pi_k} \delta_N(a\cdot x), \\ \mu_s(N,R)&=\frac{1}{\varphi^s(N)} \sum_{a\in (\mathbb Z_N^*)^s} V(a) \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} \begin{aligned} \, \sigma_s^2(N,R)&=\frac{1}{\varphi^s(N)} \sum_{a\in (\mathbb Z_N^*)^s} (V(a)-\mu_s(N,R))^2 \\ &=\frac{1}{\varphi^s(N)} \sum_{a\in (\mathbb Z_N^*)^s} V^2(a)-\mu_s^2(N,R). \end{aligned} \end{equation*} \notag $$

Lemma 7. Let $s\geqslant 2$, $R\in (1,+\infty)$, and let $\ln N \ll_s \ln R \leqslant\ln N$. Then

$$ \begin{equation} \mu_s(N,R)=\frac{2^{s+1}}{(s-1)!} \frac{R \log_2^{s-1} R}{N}+O_s \biggl( \frac{R \ln^{s-1}N}{N \ln\ln N} \biggr). \end{equation} \tag{3.3} $$
If $s\geqslant 3$ in addition, then
$$ \begin{equation} \sigma^2_s (N,R) \underset{s}\ll \mu_s(N,R). \end{equation} \tag{3.4} $$

Proof. Clearly,
$$ \begin{equation*} \sum_{a\in (\mathbb Z_N^*)^s}\sum_{x\in \Pi_k} \delta_N(a\cdot x)=2^s \sum_{a\in (\mathbb Z_N^*)^s} \sum_{\substack{2^{k_j}\leqslant x_j < 2^{k_j+1} \\ 1\leqslant j\leqslant s}} \delta_N(a\cdot x) =2^s \mathcal A_N^{(s)}(2^{k_1},\dots, 2^{k_s};0). \end{equation*} \notag $$
Using this formula and Corollary 2 we obtain the asymptotic equality
$$ \begin{equation} \begin{aligned} \, \notag \mu_s(N,R) &=\frac{2^s}{\varphi^s(N)} \sum_{k\in \Upsilon_N(R)}\mathcal A^{(s)}_N(2^{k_1},\dots, 2^{k_s};0) \\ &=\frac{2^s}{N}\sum_{k\in \Upsilon_N(R)} 2^{|k|_1}\bigl(1+O_s(\ln^{-(s-1)}N)\bigr). \end{aligned} \end{equation} \tag{3.5} $$

It can readily be seen that

$$ \begin{equation} \begin{aligned} \, \notag &\sum_{k\in \mathbb Z^s_+,\, |k|_1 \leqslant\log_2 R} 2^{|k|_1} =\sum_{0\leqslant k_0 \leqslant\log_2 R} 2^{k_0} \sum_{k_1+\dots+k_s=k_0} 1 =\sum_{0\leqslant k_0 \leqslant\log_2 R} 2^{k_0} C^{s-1}_{k_0+s} \\ &=\sum_{0\leqslant k_0 \leqslant\log_2 R} \frac{2^{k_0}}{(s-1)!} ( k_0^{s-1}+O_s (k_0^{s-2})) =\frac{2R \log_2^{s-1} R}{(s-1)!}+O_s (R \log_2^{s-2} R). \end{aligned} \end{equation} \tag{3.6} $$
Here and below $C_n^k$ is a binomial coefficient. Using (3.2) we obtain
$$ \begin{equation} \sum_{|k|_1 \leqslant\log_2 R,\, |k|_* \leqslant h} 2^{|k|_1} \underset{s}\ll h R \ln^{s-2} R \ll \frac{R \ln^{s-1} N}{\ln\ln N}. \end{equation} \tag{3.7} $$
By (3.6) and (3.7),
$$ \begin{equation} \sum_{k\in \Upsilon_N(R)} 2^{|k|_1} =\frac{2 R \log_2^{s-1} R}{(s-1)!}+O_s\biggl(\frac{R \ln^{s-1} N}{\ln\ln N}\biggr). \end{equation} \tag{3.8} $$
Asymptotic formula (3.3) follows from (3.5) and (3.8).

We proceed to the proof of (3.4). Let

$$ \begin{equation*} W_s'=(\mathbb Z^s\times \mathbb Z^s)\setminus W_s'', \end{equation*} \notag $$
where the set $W_s''$ consists of the pairs $(x,y)\in \mathbb Z^s\times \mathbb Z^s$ such that $x$ and $y$ are linearly dependent over $\mathbb R$. Set
$$ \begin{equation*} S=\sum_{a\in (\mathbb Z_N^*)^s} \sum_{k,n\in \Upsilon_N(R)} \sum_{\substack{x\in \Pi_k, y\in \Pi_n\\ (x,y)\in W_s''}} \delta_N(a\cdot x)\delta_N(a\cdot y). \end{equation*} \notag $$
We claim that
$$ \begin{equation} S\underset{s}\ll \varphi^s(N) \mu_s(N,R). \end{equation} \tag{3.9} $$
Consider any pair $(x,y)\in W_s''$ such that $x\in \Pi_k$ and $y\in \Pi_n$, where $n,k\in \Upsilon_N(R)$. Set
$$ \begin{equation*} \alpha=\frac{\operatorname{\textrm{gcd}} (x_1,\dots,x_s)}{\operatorname{\textrm{gcd}} (x_1,\dots,x_s,y_1,\dots,y_s)}\quad\text{and} \quad\beta=\frac{\operatorname{\textrm{gcd}} (y_1,\dots,y_s)}{\operatorname{\textrm{gcd}} (x_1,\dots,x_s,y_1,\dots,y_s)}. \end{equation*} \notag $$
Then $\operatorname{\textrm{gcd}} (\alpha,\beta)=1$. Since $x$ and $y$ are linearly dependent, it follows that
$$ \begin{equation*} \frac{x_j}{\alpha}=\frac{y_j}{\beta}=z_j, \qquad j=1,\dots, s, \end{equation*} \notag $$
where $z_j\in \mathbb Z$. Without loss of generality we assume that $\alpha\geqslant \beta$. The following relations are obvious:
$$ \begin{equation*} \frac{2^{k_j}}{\alpha} \leqslant |z_j| < \frac{2^{k_j+1}}{\alpha}, \quad j=1,\dots, s,\quad\text{and} \quad \alpha \leqslant\max_{k\in \Upsilon_N(R)} \min_{1\leqslant j\leqslant s} 2^{k_j+1} \leqslant 2R. \end{equation*} \notag $$
Hence
$$ \begin{equation*} S\ll \sum_{1\leqslant\beta \leqslant\alpha \leqslant 2 R} S_1(\alpha,\beta) \end{equation*} \notag $$
and
$$ \begin{equation*} S_1(\alpha,\beta)=\sum_{k\in \Upsilon_N(R)}\, \sum_{a\in (\mathbb Z_N^*)^s}\, \sum_{2^{k_j} \alpha^{-1} \leqslant |z_j| < 2^{k_j+1}\alpha^{-1}} \delta_N(\alpha a\cdot z)\delta_N(\beta a\cdot z). \end{equation*} \notag $$
Since $\operatorname{\textrm{gcd}} (\alpha,\beta)=1$, it follows that $\delta_N(\alpha a\cdot z) \delta_N(\beta a\cdot z)=\delta_N(a\cdot z)$. Using Lemma 3, relations (2.6) and (3.6), and condition $2^{|k|_*} \geqslant 2^h=\tau^3(N)\ln^{s+2} N$ we obtain
$$ \begin{equation*} \begin{aligned} \, S_1(\alpha,\beta) & \underset{s}\ll \sum_{k\in \Upsilon_N(R)} \mathcal A^{(s)}_N(2^{k_1}\alpha^{-1},\dots, 2^{k_s}\alpha^{-1};0) \\ &\underset{s}\ll\sum_{k \in \Upsilon_N(R)} \biggl(\frac{\varphi^s(N) 2^{|k|_1} }{ N \alpha^s} +\frac{\varphi^{s-1}(N) 2^{|k|_1} \tau^2(N) \ln N}{ 2^{|k|_*} \alpha^{s-1}} \biggr) \\ &\underset{s}\ll\frac{\varphi^s(N)}{N} \biggl(\frac{1}{\alpha^s} +\frac{1}{\alpha^{s-1} \ln N}\biggr) \sum_{k\in \Upsilon_N(R)} 2^{|k|_1} \\ &\underset{s}\ll{} \frac{\varphi^s(N)}{N} \biggl(\frac{1}{\alpha^3} +\frac{1}{\alpha^{2}\ln N}\biggr) R\log_2^{s-1} R. \end{aligned} \end{equation*} \notag $$
The last bound, (3.3), and the assumption that $\ln N \asymp_s \ln R$ imply that
$$ \begin{equation*} \begin{aligned} \, S &\underset{s}\ll \frac{\varphi^s(N)}{N} R\log_2^{s-1} R \sum_{1\leqslant\beta \leqslant\alpha \leqslant 2R} \biggl(\frac{1}{\alpha^3}+\frac{1}{\alpha^2 \ln N}\biggr) \\ &\underset{s}\ll\frac{\varphi^s(N)}{N} R\log_2^{s-1} R \underset{s}\ll \varphi^s(N) \mu_s(N,R). \end{aligned} \end{equation*} \notag $$
Inequality (3.9) is proved.

It is obvious that

$$ \begin{equation*} \sum_{a\in (\mathbb Z_N^*)^s} V^2(a) =\sum_{a\in (\mathbb Z_N^*)^s} \sum_{k\in \Upsilon_N(R)} \sum_{x\in \Pi_k} \delta_N(a\cdot x) \sum_{n\in \Upsilon_N(R)} \sum_{y\in \Pi_n} \delta_N(a\cdot y). \end{equation*} \notag $$
Hence, taking (3.9) into account we obtain the asymptotic formula
$$ \begin{equation} \frac{1}{\varphi^s(N)}\sum_{a\in (\mathbb Z_N^*)^s} V^2(a) =S_2+O_s(\mu_s(N,R)), \end{equation} \tag{3.10} $$
where
$$ \begin{equation*} S_2=\frac{1}{\varphi^s(N)}\sum_{a\in (\mathbb Z_N^*)^s}\, \sum_{k,n\in \Upsilon_N(R)}\, \sum_{\substack{x\in \Pi_k, y\in \Pi_n \\ (x,y)\in W_s'}} \delta_N(a\cdot x)\delta_N(a\cdot y). \end{equation*} \notag $$
It can readily be seen that
$$ \begin{equation*} S_2=\frac{2^{2s}}{\varphi^s(N)} \sum_{k,n\in \Upsilon_N(R)} \mathcal B^{(s)}_N (2^{k_1},\dots, 2^{k_s}, 2^{n_1},\dots, 2^{n_s};0,0). \end{equation*} \notag $$
Using Corollary 3 we obtain
$$ \begin{equation*} \begin{aligned} \, S_2 &=\frac{2^{2s}}{N^2} \sum_{k,n\in \Upsilon_N(R)} 2^{|k|_1+|n|_1} \bigl(1+O_s( \ln^{-(s-1)}N)\bigr) \\ &=\biggl(\frac{2^{s}}{N} \sum_{k\in \Upsilon_N(R)} 2^{|k|_1}\biggr)^2 \bigl(1+O_s(\ln^{-(s-1)}N)\bigr). \end{aligned} \end{equation*} \notag $$
It follows from the last relation, (3.10) and (3.5) that
$$ \begin{equation*} \begin{aligned} \, \sigma_s^2(N,R) &=\frac{1}{\varphi^s(N)}\sum_{a\in (\mathbb Z_N^*)^s} V^2(a)-\mu_s^2(N,R) \\ &=\biggl(\frac{2^{s}}{N} \sum_{k\in \Upsilon_N(R)} 2^{|k|_1}\biggr)^2 \bigl(1+O_s(\ln^{-(s-1)}N) -(1+O_s(\ln^{-(s-1)}N))^2\bigr) \\ &\qquad+O_s(\mu_s(N,R)) \\ &\underset{s}\ll \frac{1}{N^2 \ln^{s-1} N }\biggl(\sum_{k\in \Upsilon_N(R)} 2^{|k|_1}\biggr)^2+\mu_s(N,R). \end{aligned} \end{equation*} \notag $$
Using (3.6), (3.3) and the conditions $\ln N \ll_s \ln R \leqslant\ln N$ yields
$$ \begin{equation*} \sigma_s^2(N,R) \underset{s}\ll \frac{1}{N^2 \ln^{s-1} N } (R \ln^{s-1} R)^2+\mu_s(N,R) \ll \mu_s(N,R). \end{equation*} \notag $$

This completes the proof of Lemma 7.

Remark 4. Let $X$ be a finite subset of $(0,+\infty)$ and let

$$ \begin{equation*} \mu=\frac{1}{\# X} \sum_{x\in X} x, \qquad \sigma^2=\frac{1}{\# X} \sum_{x\in X} (x-\mu)^2. \end{equation*} \notag $$
The following Chebyshev inequality holds for any positive real $\lambda$:
$$ \begin{equation*} \frac{\# \{x\in X\colon |x-\mu|\geqslant \lambda\}}{\# X} \leqslant\frac{\sigma^2}{\lambda^2}. \end{equation*} \notag $$

Chebyshev’s inequality and Lemma 7 imply the following result.

Corollary 4. Let $s\geqslant 3$, $R\in (1,+\infty)$ and $\ln N \ll_s \ln R \leqslant\ln N$. Then, for any positive real $\xi$,

$$ \begin{equation*} \frac{1}{\varphi^s(N)} \cdot\# \bigl\{a\in(\mathbb Z_N^*)^s\colon| V(a) - \mu_s(N,R)|\geqslant \xi \bigr\} \underset{s}\ll\frac{R \ln^{s-1} N}{\xi^2 N}. \end{equation*} \notag $$

We define a set

$$ \begin{equation*} \Omega_N(R)=\Bigl\{x\in \mathbb Z^s\colon H(x) \leqslant R, \, \min_{1\leqslant j\leqslant s} |x_j| \geqslant 2\tau^3(N) \ln^{s+2} N\Bigr\}. \end{equation*} \notag $$
It can readily be seen that
$$ \begin{equation} \Omega_N(R) \subset \bigcup_{k\in \Upsilon_N(R)} \Pi_k. \end{equation} \tag{3.11} $$

Set

$$ \begin{equation*} \widehat \mu=\widehat \mu (N,R,s)=\frac{2^{s+1}}{(s-1)!} \frac{R \log_2^{s-1} R}{N}. \end{equation*} \notag $$

Corollary 5. Let $s\geqslant 3$, $\eta_0 \in (1,+\infty)$, $R\in (1,+\infty)$ and $\ln N \ll_s \ln R \leqslant\ln N$. Then for any real $\eta\geqslant \eta_0$,

$$ \begin{equation*} \frac{1}{\varphi^s(N)}\cdot\#\biggl\{a\in(\mathbb Z_N^*)^s\colon \sum_{x\in \Omega_N(R)} \delta_N (a\cdot x) \geqslant \eta \widehat \mu \biggr\} \underset{s,\eta_0}\ll \frac{N}{\eta^2 R \ln^{s-1} N}. \end{equation*} \notag $$

Proof. By (3.3) there exists a positive integer $N_0$, which depends only on $s$ and $\eta_0$, such that
$$ \begin{equation*} \mu_s(N,R) \leqslant\widehat \mu \biggl(\frac{1}{2}+\frac{1}{2\eta_0}\biggr)^{-1} \quad\text{for all } N\geqslant N_0. \end{equation*} \notag $$
Without loss of generality we assume that $N\geqslant N_0$.

Consider an arbitrary $a\in (\mathbb Z_N^*)^s$ such that

$$ \begin{equation*} \sum_{x\in \Omega_N(R)} \delta_N (a\cdot x) \geqslant \eta \widehat \mu. \end{equation*} \notag $$
Using (3.11) we obtain
$$ \begin{equation*} V(a) \geqslant \sum_{x\in \Omega_N(R)} \delta_N(a\cdot x) \geqslant \eta \widehat \mu \geqslant \eta \mu_s(N,R) \biggl(\frac{1}{2}+\frac{1}{2\eta_0}\biggr) > \mu_s(N,R). \end{equation*} \notag $$
Hence
$$ \begin{equation*} \begin{aligned} \, |V(a)-\mu_s(N,R)| &=V(a)-\mu_s(N,R) \geqslant \eta \widehat \mu- \widehat \mu \biggl(\frac{1}{2}+\frac{1}{2\eta_0}\biggr)^{-1} \\ &=\eta \widehat \mu \biggl(1-\frac{2\eta_0}{\eta (\eta_0+1)}\biggr) \geqslant \eta \widehat \mu \biggl(1- \frac{2}{\eta_0+1}\biggr). \end{aligned} \end{equation*} \notag $$
By Corollary 4 the number of such elements $a\in (\mathbb Z_N^*)^s$ does not exceed
$$ \begin{equation*} O_s\biggl(\varphi^s(N) \frac{R \ln^{s-1} N}{N} \biggl(\eta\widehat \mu \biggl(1- \frac{2}{\eta_0+1}\biggr) \biggr)^{-2} \biggr) =O_{s,\eta_0} \biggl(\varphi^s(N)\frac{N}{\eta^2 R \ln^{s-1} N}\biggr). \end{equation*} \notag $$

This completes the proof of the corollary.

§ 4. Proof of Theorem 1

Lemma 8. Let $s\geqslant 2$, $R\in (1,+\infty)$ and $\ln N \ll_s \ln R \leqslant\ln N$. Then

$$ \begin{equation} \sum_{a\in (\mathbb Z_N^*)^s} \mathop{{\sum}'}_{H(x)\leqslant R} \delta_N(a\cdot x) \underset{s}\ll \varphi^s(N) \frac{R \ln^{s-1}N}{N}. \end{equation} \tag{4.1} $$

Proof. It follows from the proof of Theorem 2 in [8] that
$$ \begin{equation*} \sum_{a\in (\mathbb Z_N^*)^s} \mathop{{\sum}'}_{H(x)\leqslant R} \delta_N(a\cdot x)=\sum_{t=2}^s 2^t C^t_s \varphi^{s-t}(N) E_N^{(t)}(R), \end{equation*} \notag $$
where
$$ \begin{equation*} E_N^{(t)}(R)=\sum_{a\in (\mathbb Z_N^*)^t} \sum_{x\in \mathbb N^t,\, H(x)\leqslant R} \delta_N(a\cdot x) \underset{t}\ll \varphi^{t-1}(N) R \ln^{t-1} R. \end{equation*} \notag $$
Therefore,
$$ \begin{equation} \sum_{a\in (\mathbb Z_N^*)^s} \mathop{{\sum}'}_{H(x)\leqslant R} \delta_N(a\cdot x)=2^s E_N^{(s)}(R)+O_s (\varphi^{s-2}(N) R \ln^{s-2} R). \end{equation} \tag{4.2} $$
It can readily be seen that
$$ \begin{equation} E_N^{(s)}(R) \leqslant\sum_{k\in \mathbb Z^s_+,\, |k|_1 \leqslant\log_2 R} \mathcal A^{(s)}_N(2^{k_1},\dots, 2^{k_s};0)=S_1+S_2, \end{equation} \tag{4.3} $$
where
$$ \begin{equation*} S_1 =\sum_{|k|_1 \leqslant\log_2 R,\, |k|_\infty \geqslant h} \mathcal A^{(s)}_N(2^{k_1},\dots, 2^{k_s};0), \qquad h=\log_2 (\tau^3(N) \ln^{s+2} N) \end{equation*} \notag $$
and
$$ \begin{equation*} S_2 = \sum_{|k|_1 \leqslant\log_2 R,\, |k|_\infty < h} \mathcal A^{(s)}_N(2^{k_1},\dots, 2^{k_s};0). \end{equation*} \notag $$

It follows from Corollary 2 and (3.6) that

$$ \begin{equation} S_1 \underset{s}\ll \frac{\varphi^s(N)}{N} \sum_{|k|_1 \leqslant\log_2 R} 2^{|k|_1} \underset{s}\ll \frac{\varphi^s(N)}{N} R \log_2^{s-1} R. \end{equation} \tag{4.4} $$
Using Lemma 1 and inequality (3.2) we obtain
$$ \begin{equation} \begin{aligned} \, \notag S_2 &\leqslant 2^s \varphi^{s-1}(N) \sum_{|k|_1 \leqslant\log_2 R,\, |k|_\infty \leqslant h} 2^{|k|_1} \underset{s}\ll \varphi^{s-1}(N) R h^{s-1} \\ &\underset{s}\ll\varphi^{s-1}(N) R \biggl(\frac{\ln N}{\ln\ln N}\biggr)^{s-1} \ll \frac{\varphi^s(N)}{N} R \frac{\ln^{s-1} N}{(\ln\ln N)^{s-2}}. \end{aligned} \end{equation} \tag{4.5} $$
Estimate (4.1) follows from (4.2)(4.5).

This completes the proof of Lemma 8.

Proof of Theorem 1. It is clear that
$$ \begin{equation*} \#\{a\in (\mathbb Z_N^*)^s \colon q_N(a) \leqslant R\} \leqslant\sum_{a\in (\mathbb Z_N^*)^s} \mathop{{\sum}'}_{H(x)\leqslant R} \delta_N(a\cdot x). \end{equation*} \notag $$
Using Lemma 8 for $R=N (\lambda \ln^{s-1} N)^{-1}$ we obtain
$$ \begin{equation*} \#\biggl\{a\in (\mathbb Z_N^*)^s \colon q_N(a) \leqslant\frac{N}{\lambda \ln^{s-1} N}\biggr\} \underset{s}\ll \frac{\varphi^s(N)}{\lambda}. \end{equation*} \notag $$

It remains to estimate the number of $a\in (\mathbb Z_N^*)^s$ such that $q_N(a) \geqslant N \lambda (\ln N)^{1-s}$. Set

$$ \begin{equation*} R=\lambda \frac{N}{2^s\ln^{s-1} N}\quad\text{and} \quad \xi=\frac{\mu_s(N,R)}{2}. \end{equation*} \notag $$
Fix an arbitrary $a\in (\mathbb Z_N^*)^s$ such that
$$ \begin{equation*} q_N(a)> \lambda\frac{N}{\ln^{s-1} N}. \end{equation*} \notag $$
If $x\in \bigcup_{k\in \Upsilon_N(R)} \Pi_k$, then
$$ \begin{equation*} H(x)=|x_1\dotsb x_s| \leqslant 2^{s+|k|_1} \leqslant 2^s R=\lambda\frac{N}{\ln^{s-1} N}. \end{equation*} \notag $$
Therefore, $a\cdot x \not\equiv 0 \pmod N$ and $\delta_N(a\cdot x)=0$. Thus,
$$ \begin{equation*} \biggl| \sum_{k\in \Upsilon_N(R)} \sum_{x\in \Pi_k} \delta_N(a\cdot x) -\mu_s(N,R) \biggr|=\mu_s(N,R) \geqslant \frac{\mu_s(N,R)}{2}=\xi. \end{equation*} \notag $$
Using Corollary 4 and (3.3) we obtain
$$ \begin{equation*} \begin{aligned} \, &\frac{1}{\varphi^s(N)}\cdot\# \biggl\{a\in (\mathbb Z_N^*)^s \colon q_N(a) > \lambda\frac{N}{\ln^{s-1} N}\biggr\} \\ &\qquad \underset{s}\ll \frac{R \ln^{s-1} N}{\xi^2 N} =\frac{4R \ln^{s-1} N}{\mu_s^2(N,R) N} \\ &\qquad\underset{s}\ll \frac{N R \ln^{s-1} N}{ (R \ln^{s-1} R)^2} =\frac{1}{\lambda} \biggl(\frac{\ln N}{\ln R} \biggr)^{2(s-1)} \underset{s}\ll \frac{1}{\lambda}. \end{aligned} \end{equation*} \notag $$

This completes the proof of Theorem 1.

Proof of Corollary 1. Using (1.2) we see that $q_N(a) \gg_s D(K_N(a))^{-1}$. Therefore, Corollary 1 follows from Theorem 1.

§ 5. Proof of Theorem 2

Let $\Gamma$ be a lattice in $\mathbb R^s$, so that $\Gamma$ is a discrete additive subgroup of the group $(\mathbb R^s,+)$.

A nonzero node $u\in \Gamma$ is called a relative minimum of $\Gamma$ if there exists no other nonzero node $v\in \Gamma\setminus\{0\}$ such that

$$ \begin{equation*} |v_j| \leqslant |u_j|, \qquad j=1,\dots,s, \end{equation*} \notag $$
and at least one of these inequalities is strict. We denote the set of relative minima of the lattice $\Gamma$ by $\mathfrak M(\Gamma)$.

For any $a\in (\mathbb Z_N^*)^s$ set

$$ \begin{equation*} \Gamma_N(a)=\{x\in \mathbb Z^s\colon a\cdot x \equiv 0\ (\operatorname{mod} N)\}. \end{equation*} \notag $$
It follows from Minkowski’s convex body theorem that
$$ \begin{equation} H(u) \leqslant N \quad \text{for all } u\in \mathfrak M(\Gamma_N(a)). \end{equation} \tag{5.1} $$

Theorem (see [8], Theorem 1). Let $s\geqslant 2$, $N\in \mathbb N$ and $a\in \mathbb Z^s\setminus\{0\}$. Then

$$ \begin{equation} D(K_N(a)) \underset{s}\ll \sum_{u\in \mathfrak M(\Gamma_N(a))} \frac{1}{H(u)}. \end{equation} \tag{5.2} $$

By (5.1) and (5.2) there exists a positive constant $C_0(s)$ depending only on $s$ such that

$$ \begin{equation} D(K_N(a)) \leqslant C_0(s)\mathop{{\sum}'}_{H(x)\leqslant N} \frac{\delta_N(a\cdot x)}{H(x)}. \end{equation} \tag{5.3} $$

For every $T\in [1,N]$ we set

$$ \begin{equation*} \begin{aligned} \, \Theta_N(T) &=\biggl\{x\in \mathbb Z^s\setminus\{0\}\colon \frac{N}{T} \leqslant H(x)\leqslant N\biggr\}, \\ \Theta'_N(T) &=\Bigl\{x\in \Theta_N(T)\colon \min_{1\leqslant j \leqslant s} |x_j| \geqslant 2\tau^3(N) \ln^{s+2} N\Bigr\} \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} \Theta''_N(T) =\Theta_N(T)\setminus \Theta'_N(T). \end{equation*} \notag $$

Lemma 9. Let $s\geqslant 2$ and $T\in [2, \sqrt N]$. Then

$$ \begin{equation} \sum_{a\in (\mathbb Z_N^*)^s} \sum_{x\in \Theta''_N(T)} \frac{\delta_N(a\cdot x)}{H(x)} \underset{s} \ll \frac{\varphi^s(N) \ln^{s-1} N}{N \ln\ln N} \ln T. \end{equation} \tag{5.4} $$

Proof. Consider an arbitrary $t\in\{2,\dots,s\}$. By [8], Lemma 13,
$$ \begin{equation*} \sum_{a\in (\mathbb Z_N^*)^t} \sum_{NT^{-1} \leqslant |x_1 \cdots x_t| \leqslant N} \frac{\delta_N(a\cdot x)}{H(x)} \underset{t}\ll \frac{\varphi^t (N) \ln^{t-1} N}{N} \ln T \ll \frac{\varphi^t(N) \ln^{t-1} N}{N} \ln\ln N. \end{equation*} \notag $$
Therefore, the left-hand side of (5.4) does not exceed
$$ \begin{equation*} G(N,T)+O_s \biggl(\frac{\varphi^{s-1} (N) \ln^{s-2} N}{N} \ln \ln N\biggr), \end{equation*} \notag $$
where
$$ \begin{equation*} G(N,T)=\sum_{a\in (\mathbb Z_N^*)^s} \sum_{\substack{x\in \Theta''_N(T) \\ x_1 \dotsb x_s \neq 0}} \frac{\delta_N(a\cdot x)}{H(x)} \underset{s}\ll \sum_{a\in (\mathbb Z_N^*)^s}\, \sum_{\substack{x\in \mathbb N^s,\, NT^{-1}\leqslant H(x)\leqslant N\\ x_1 \leqslant 2^h}} \frac{\delta_N(a\cdot x)}{H(x)}, \end{equation*} \notag $$
and $h=\log_2 (2\tau^3(N) \ln^{s+2} N)$. It can readily be proved that
$$ \begin{equation*} G(N,T) \underset{s}\ll \sum_{k} \sum_{\substack{2^{k_j}\leqslant x_j < 2^{k_{j+1}} \\ 1\leqslant j\leqslant s}} \sum_{a\in (\mathbb Z_N^*)^s} \frac{\delta_N(a\cdot x)}{H(x)} \leqslant \sum_{k} \frac{1}{2^{|k|_1}} \mathcal A_N^{(s)}(2^{k_1},\dots, 2^{k_s};0), \end{equation*} \notag $$
where $\sum_k$ is the sum with respect to $k\in \mathbb Z^s_+$ such that $k_1 \leqslant h$, $\log_2(NT^{-1})-s \leqslant |k|_1 \leqslant\log_2 N$. Since $|k|_1 \geqslant \log_2(N T^{-1})-s$ and $T\leqslant\sqrt N$, it follows that
$$ \begin{equation*} \max_{1\leqslant j\leqslant s} k_j \geqslant \frac{|k|_1}{s} \geqslant \frac{\log_2 N}{2s} -1\quad\!\!\text{and}\!\!\quad \max\{2^{k_1},\dots, 2^{k_s}\} \geqslant \frac{N^{1/(2s)}}{2} \underset{s}\gg \tau^3(N) \ln^{s+2} N. \end{equation*} \notag $$
Using these relations and Corollary 2 we obtain
$$ \begin{equation*} \mathcal A_N^{(s)}(2^{k_1},\dots, 2^{k_s};0) \underset{s}\ll \frac{\varphi^s(N)}{ N} 2^{|k|_1}. \end{equation*} \notag $$
Thus,
$$ \begin{equation*} \begin{aligned} \, \frac{N}{\varphi^s(N)} G(N,T) &\underset{s}\ll \sum_{k} 1 =\sum_{\log_2(NT^{-1})-s \leqslant k_0 \leqslant\log_2 N}\, \sum_{k_1+\dots+k_s=k_0,\, k_1 \leqslant h} 1 \\ &\underset{s}\ll h \log_2^{s-2} N \sum_{\log_2(NT^{-1})-s \leqslant k_0 \leqslant\log_2 N} 1 \ll h (\log_2 N)^{s-2} \log_2 T. \end{aligned} \end{equation*} \notag $$
Taking (3.1) into account we conclude that
$$ \begin{equation*} G(N,T) \underset{s}\ll \frac{\varphi^s(N)}{N} \frac{\log_2^{s-1} N}{\ln\ln N} \log_2 T. \end{equation*} \notag $$

This completes the proof of Lemma 9.

Remark 5. Let $X$ be a finite subset of $(0,+\infty)$, and let $\mu$ be the arithmetic mean of the numbers in $X$. For any $\eta> 0$ the following Markov inequality holds:

$$ \begin{equation*} \frac{\#\{x\in X\colon x\geqslant \eta\}}{\# X} \leqslant\frac{\mu}{\eta}. \end{equation*} \notag $$

Corollary 6. Let $s\geqslant 2$, $T\in [2, \sqrt N]$ and $\eta> 0$. Then

$$ \begin{equation} \frac{1}{\varphi^s(N)} \cdot\# \biggl\{a\in (\mathbb Z_N^*)^s \colon \sum_{x\in \Theta''_N(T)} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant \eta \biggr\} \underset{s}\ll \frac{(\ln N)^{s-1}\ln T}{\eta N \ln\ln N}. \end{equation} \tag{5.5} $$

This follows from Markov’s inequality and Lemma 9.

Lemma 10. Let $s \!\geqslant\! 3$, $\gamma_0 \!\in\! (1,+\infty)$ and $T \!\in\! (1,+\infty)$, where ${\ln\ln N\!\ll_s\!\ln T \!\leqslant\!\ln N}$. Then for any $\gamma\geqslant \gamma_0$,

$$ \begin{equation} \begin{aligned} \, \notag &\frac{1}{\varphi^s(N)} \cdot\# \biggl\{a\in (\mathbb Z_N^*)^s \colon \sum_{x\in \Theta'_N(N)} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant 3\gamma \frac{2^{s+1}}{(s-1)!}\frac{\log_2^{s-1} N}{N} \log_2 T\biggr\} \\ &\qquad\underset{s,\eta_0}\ll\frac{T}{\gamma^2 (\ln N)^{s-1} (\ln T)^2}. \end{aligned} \end{equation} \tag{5.6} $$

Proof. Let
$$ \begin{equation*} R_j = \frac{2^{j} N}{2^{[\log_2 T]}}, \qquad 0\leqslant j\leqslant [\log_2 T], \end{equation*} \notag $$
and
$$ \begin{equation*} \Theta_j=\biggl\{x\in \mathbb Z^s\colon \frac{R_j}{2} < H(x)\leqslant R_j, \ \min_{1\leqslant j\leqslant s} |x_j| \geqslant 2\tau^3(N) \ln^{s+2} N \biggr\}. \end{equation*} \notag $$
Then
$$ \begin{equation*} \Theta'_N(T) \subset \bigcup_{0\leqslant j\leqslant\log_2 T} \Theta_j. \end{equation*} \notag $$
We set
$$ \begin{equation*} \lambda_j=\begin{cases} \dfrac{\log_2 T}{(j+m)^2} & \text{for } j\leqslant (\log_2 T)^{1/3}, \\ 2 & \text{for } j> (\log_2 T)^{1/3}, \end{cases} \end{equation*} \notag $$
where $m$ is an absolute constant such that $\sum_{j\geqslant 0} (j+m)^{-2} < 1$. Then
$$ \begin{equation*} \begin{aligned} \, \sum_{0\leqslant j \leqslant\log_2 T} \lambda_j &\leqslant\sum_{j\geqslant 0} \frac{\log_2 T}{(j+m)^2}+\sum_{(\log_2 T)^{1/3} < j \leqslant\log_2 T} 2 \\ &<\log_2 T+2 \log_2 T=3 \log_2 T. \end{aligned} \end{equation*} \notag $$

Let $a\in (\mathbb Z_N^*)^s$ and

$$ \begin{equation*} \sum_{x\in \Theta'_N(T)} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant 3\gamma \frac{2^{s+1}}{(s-1)!}\frac{\log_2^{s-1} N}{N} \log_2T. \end{equation*} \notag $$
Then there is an index $j$ satisfying the condition
$$ \begin{equation} \sum_{x\in \Theta_j} \delta_N(a\cdot x) > \eta_j \frac{2^{s+1}}{(s-1)!} \frac{R_j \log_2^{s-1} R_j}{N}, \end{equation} \tag{5.7} $$
where $\eta_j=\gamma \lambda_j/2$. Indeed, otherwise
$$ \begin{equation*} \begin{aligned} \, \sum_{x\in \Theta'_N(T)} \frac{\delta_N(a\cdot x)}{H(x)} &\leqslant\sum_{0\leqslant j \leqslant\log_2 T} \sum_{x\in \Theta_j} \frac{\delta_N(a\cdot x)}{H(x)} \\ &\leqslant\sum_{0\leqslant j \leqslant\log_2 T} \frac{2}{R_j} \cdot \eta_j \frac{2^{s+1}}{(s-1)!} \frac{R_j \log_2^{s-1} R_j}{N} \\ &\leqslant\gamma \frac{2^{s+1}}{(s-1)!} \frac{\log_2^{s-1} N}{N} \sum_{0\leqslant j \leqslant\log_2 T} \lambda_j \\ &< 3\gamma \frac{2^{s+1}}{(s-1)!} \frac{\log_2^{s-1} N}{N} \log_2 T. \end{aligned} \end{equation*} \notag $$

It follows from (5.7) that the left-hand side of (5.6) does not exceed

$$ \begin{equation*} \frac{1}{\varphi^s(N)} \sum_{0\leqslant j\leqslant\log_2 T} L_j, \end{equation*} \notag $$
where $L_j$ is the number of $a\in (\mathbb Z_N^*)^s$ for which (5.7) holds.

Since $\ln T \gg_s \ln\ln N$, we can assume without loss of generality that

$$ \begin{equation*} \frac{\log_2 T}{2((\log_2 T)^{1/3}+m)^2} \geqslant 1. \end{equation*} \notag $$
Hence
$$ \begin{equation*} \text{if } j> (\log_2 T)^{1/3}, \quad\text{then } \eta_j=\gamma \geqslant \gamma_0, \end{equation*} \notag $$
and
$$ \begin{equation*} \text{if } j\leqslant (\log_2 T)^{1/3}, \quad\text{then } \eta_j=\frac{\gamma \log_2 T}{2(j+m)^2} \geqslant \frac{\gamma \log_2 T}{2((\log_2 T)^{1/3}+m)^2} \geqslant \gamma\geqslant \gamma_0. \end{equation*} \notag $$

It is obvious that $\Theta_j \subset \Omega_N(R_j)$ (the set $\Omega_N(R)$ was defined in § 3). Therefore, it follows from (5.7) that

$$ \begin{equation*} \sum_{x\in \Omega_N(R_j)} \delta_N(a\cdot x) \geqslant\sum_{x\in \Theta_j} \delta_N(a\cdot x) >\eta_j \frac{2^{s+1}}{(s-1)!} \frac{R_j \log_2^{s-1} R_j}{N}. \end{equation*} \notag $$
Using Corollary 5 we obtain
$$ \begin{equation*} \frac{L_j}{\varphi^s(N)} \underset{s,\gamma_0} \ll \frac{N}{\eta_j^2 R_j \ln^{s-1} N} =\frac{4\cdot 2^{[\log_2 T]}}{\gamma^2 \lambda_j^2 2^{j} \ln^{s-1} N}. \end{equation*} \notag $$
Thus, the left-hand side of (5.6) does not exceed
$$ \begin{equation*} \begin{aligned} \, \frac{1}{\varphi^s(N)} \sum_{0\leqslant j\leqslant\log_2 T} L_j &\underset{s,\gamma_0}\ll \frac{T}{\gamma^2 \ln^{s-1} N} \sum_{0\leqslant j \leqslant\log_2 T}\frac{1}{ \lambda_j^2 2^{j}} \\ &\leqslant \frac{T}{\gamma^2 \ln^{s-1} N} \biggl( \sum_{j\geqslant 0} \frac{(j+m)^4}{2^j \log_2^2 T} +\sum_{j> (\log_2 T)^{1/3}} \frac{1}{4\cdot 2^j} \biggr) \\ &\ll \frac{T}{\gamma^2 (\ln N)^{s-1} (\log_2 T)^2} . \end{aligned} \end{equation*} \notag $$

This completes the proof of Lemma 10.

Proof of Theorem 2. Set
$$ \begin{equation*} \begin{gathered} \, T=\lambda (\ln N)^{s-1} \ln\ln N, \\ \mu_0=\frac{\ln^{s-1} N}{N} \ln\ln N\quad\text{and} \quad \widetilde \mu=3 \frac{2^{s+1}}{(s-1)!} \,\frac{\log_2^{s-1} N}{N} \log_2 T. \end{gathered} \end{equation*} \notag $$
Since $\ln \lambda\ll_s \ln\ln N$, it follows that $\ln T \asymp_s \ln\ln N$. Hence $\widetilde \mu \ll_s \mu_0$, that is, there is a positive constant $C_1(s)$ depending only on $s$ such that $\widetilde \mu \leqslant C_1(s)\mu_0$. Let ${C(s)=3 C_0(s)C_1(s)}$, where $C_0(s)$ is the constant from (5.3).

If $a\in (\mathbb Z_N^*)^s$ and $D(K_N(a)) \geqslant \lambda C(s) \mu_0$, then

$$ \begin{equation*} \mathop{{\sum}'}_{H(x) \leqslant N} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant \frac{1}{C_0(s)} D(K_N(a)) \geqslant \frac{\lambda C(s) \mu_0}{ C_0(s)} =3 \lambda C_1(s)\mu_0 \geqslant 3\lambda \widetilde \mu \end{equation*} \notag $$
by (5.3). Therefore, the number of points $a\,{\in}\, (\mathbb Z_N^*)^s$ such that $D(K_N(a))\,{\geqslant}\, \lambda C(s) \mu_0$ does not exceed
$$ \begin{equation*} M=\biggl\{a\in (\mathbb Z_N^*)^s\colon \mathop{{\sum}'}_{H(x) \leqslant N} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant 3\lambda \widetilde \mu\biggr\}. \end{equation*} \notag $$
It can readily be seen that $M\leqslant M_1+M_2+M_3$, where
$$ \begin{equation*} \begin{aligned} \, M_1 &=\biggl\{a\in (\mathbb Z_N^*)^s\colon q_N(a) \leqslant\frac{N}{T}\biggr\}, \\ M_2 &=\biggl\{a\in (\mathbb Z_N^*)^s\colon \sum_{x\in \Theta'_N (T)} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant 2\lambda \widetilde \mu\biggr\}, \\ M_3 &=\biggl\{a\in (\mathbb Z_N^*)^s\colon \sum_{x\in \Theta''_N (T)} \frac{\delta_N(a\cdot x)}{H(x)} \geqslant \lambda \widetilde \mu\biggr\}. \end{aligned} \end{equation*} \notag $$
From Theorem 1, Lemma 10 (for $\eta_0=2$) and Corollary 6 we conclude that
$$ \begin{equation*} \begin{gathered} \, M_1 \underset{s}\ll\frac{\varphi^s(N)}{\lambda \ln\ln N}, \\ M_2 \underset{s}\ll\varphi^s(N)\frac{ T}{\lambda^2 (\ln N)^{s-1} (\ln T)^2} =\varphi^s(N)\frac{\ln\ln N}{\lambda \ln^2 T} \underset{s}\asymp \frac{\varphi^s(N)}{\lambda \ln\ln N} \end{gathered} \end{equation*} \notag $$
and
$$ \begin{equation*} M_3 \underset{s}\ll\varphi^s(N) \frac{\ln^{s-1} N}{N \ln\ln N}\, \frac{\ln T}{\lambda \widetilde \mu} \underset{s}\ll \frac{\varphi^s(N)}{\lambda \ln\ln N}. \end{equation*} \notag $$

This completes the proof of Theorem 2.


Bibliography

1. N. M. Korobov, “Approximate evaluation of repeated integrals”, Dokl. Akad. Nauk. SSSR, 124:6 (1959), 1207–1210 (Russian)  mathscinet  zmath
2. E. Hlawka, “Zur angenäherten Berechnung mehrfacher Integrale”, Monatsh. Math., 66:2 (1962), 140–151  crossref  mathscinet  zmath
3. N. M. Korobov, Number-theoretic methods in approximate analysis, 2nd ed., Moscow Center for Continuous Mathematical Education, Moscow, 2004, 285 pp. (Russian)  mathscinet  zmath
4. Hua Loo Keng and Wang Yuan, Applications of number theory to numerical analysis, Springer-Verlag, Berlin–New York; Kexue Chubanshe (Science Press), Beijing, 1981, ix+241 pp.  crossref  mathscinet  zmath
5. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conf. Ser. in Appl. Math., 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, vi+241 pp.  crossref  mathscinet  zmath
6. H. Niederreiter, “Existence of good lattice points in the sense of Hlawka”, Monatsh. Math., 86:3 (1978/79), 203–219  crossref  mathscinet  zmath
7. G. Larcher, “On the distribution of sequences connected with good lattice points”, Monatsh. Math., 101:2 (1986), 135–150  crossref  mathscinet  zmath
8. V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Ross. Akad. Nauk Ser. Mat., 76:3 (2012), 19–38  mathnet  crossref  mathscinet  zmath; English transl. in Izv. Math., 76:3 (2012), 446–465  crossref  adsnasa
9. W. M. Schmidt, “Irregularities of distribution. VII”, Acta Arith., 21 (1972), 45–50  crossref  mathscinet  zmath
10. D. Bilyk, M. T. Lacey and A. Vagharshakyan, “On the small ball inequality in all dimensions”, J. Funct. Anal., 254:9 (2008), 2470–2502  crossref  mathscinet  zmath
11. N. S. Bakhvalov, “Approximate computation of multiple integrals”, Vestn. Moskov. Univ. Ser. Mat. Mekh. Astronom. Fiz. Khim., 1959, no. 4, 3–18 (Russian)  mathscinet  zmath
12. E. Hlawka, “Uniform distribution modulo 1 and numerical analysis”, Compositio Math., 16 (1964), 92–105  mathscinet  zmath
13. S. K. Zaremba, “Good lattice points modulo composite numbers”, Monatsh. Math., 78 (1974), 446–460  crossref  mathscinet  zmath
14. M. G. Rukavishnikova, “The law of large numbers for the sum of the partial quotients of a rational number with fixed denominator”, Mat. Zametki, 90:3 (2011), 431–444  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 90:3 (2011), 418–430  crossref
15. N. G. Moshchevitin, “Sets of the form $\mathscr A+\mathscr B$ and finite continued fractions”, Mat. Sb., 198:4 (2007), 95–116  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 198:4 (2007), 537–557  crossref
16. A. A. Illarionov, “A probability estimate for the discrepancy of Korobov lattice points”, Mat. Sb., 212:11 (2021), 73–88  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 212:11 (2021), 1571–1587  crossref  adsnasa
17. J. Beck, “Probabilistic Diophantine approximation. I. Kronecker sequences”, Ann. of Math. (2), 140:2 (1994), 449+451–502  crossref  mathscinet  zmath
18. J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, viii+344 pp.  crossref  mathscinet  zmath

Citation: A. A. Illarionov, “Distribution of Korobov-Hlawka sequences”, Sb. Math., 213:9 (2022), 1222–1249
Citation in format AMSBIB
\Bibitem{Ill22}
\by A.~A.~Illarionov
\paper Distribution of Korobov-Hlawka sequences
\jour Sb. Math.
\yr 2022
\vol 213
\issue 9
\pages 1222--1249
\mathnet{http://mi.mathnet.ru//eng/sm9697}
\crossref{https://doi.org/10.4213/sm9697e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563376}
\zmath{https://zbmath.org/?q=an:1523.11140}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213.1222I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992271700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85162150925}
Linking options:
  • https://www.mathnet.ru/eng/sm9697
  • https://doi.org/10.4213/sm9697e
  • https://www.mathnet.ru/eng/sm/v213/i9/p70
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:316
    Russian version PDF:21
    English version PDF:51
    Russian version HTML:167
    English version HTML:81
    References:63
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024