Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 1, Pages 109–128
DOI: https://doi.org/10.1070/SM9615
(Mi sm9615)
 

This article is cited in 4 scientific papers (total in 4 papers)

More about sparse halves in triangle-free graphs

A. A. Razborovab

a University of Chicago, Chicago, USA
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: One of Erdős's conjectures states that every triangle-free graph on $n$ vertices has an induced subgraph on $n/2$ vertices with at most $n^2/50$ edges. We report several partial results towards this conjecture. In particular, we establish the new bound $27n^2/1024$ on the number of edges in the general case. We completely prove the conjecture for graphs of girth $\geqslant 5$, for graphs with independence number $\geqslant 2n/5$ and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph.
Bibliography: 21 titles.
Keywords: extremal graph theory, triangle-free graphs.
Received: 22.05.2021 and 01.08.2021
Bibliographic databases:
Document Type: Article
UDC: 519.176
MSC: 05C35
Language: English
Original paper language: Russian
Citation: A. A. Razborov, “More about sparse halves in triangle-free graphs”, Sb. Math., 213:1 (2022), 109–128
Citation in format AMSBIB
\Bibitem{Raz22}
\by A.~A.~Razborov
\paper More about sparse halves in triangle-free graphs
\jour Sb. Math.
\yr 2022
\vol 213
\issue 1
\pages 109--128
\mathnet{http://mi.mathnet.ru//eng/sm9615}
\crossref{https://doi.org/10.1070/SM9615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360109}
\zmath{https://zbmath.org/?q=an:1485.05087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..109R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772205300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128121989}
Linking options:
  • https://www.mathnet.ru/eng/sm9615
  • https://doi.org/10.1070/SM9615
  • https://www.mathnet.ru/eng/sm/v213/i1/p119
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024