Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 1, Pages 88–108
DOI: https://doi.org/10.1070/SM9510
(Mi sm9510)
 

This article is cited in 2 scientific papers (total in 2 papers)

On singular log Calabi-Yau compactifications of Landau-Ginzburg models

V. V. Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We consider the procedure that constructs log Calabi-Yau compactifications of weak Landau-Ginzburg models of Fano varieties. We apply it to del Pezzo surfaces and coverings of projective spaces of index $1$. For coverings of degree greater than $2$ the log Calabi-Yau compactification is singular; moreover, no smooth projective log Calabi-Yau compactification exists. We also prove, in the cases under consideration, the conjecture that the number of components of the fibre over infinity is equal to the dimension of an anticanonical system of the Fano variety.
Bibliography: 46 titles.
Keywords: Landau-Ginzburg models, Calabi-Yau compactifications, Fano varieties, coverings.
Funding agency Grant number
Russian Science Foundation 19-11-00164
This work was supported by the Russian Science Foundation under grant no. 19-11-00164.
Received: 04.09.2020 and 27.05.2021
Russian version:
Matematicheskii Sbornik, 2022, Volume 213, Number 1, Pages 95–118
DOI: https://doi.org/10.4213/sm9510
Bibliographic databases:
Document Type: Article
UDC: 512.76
MSC: 14J33
Language: English
Original paper language: Russian
Citation: V. V. Przyjalkowski, “On singular log Calabi-Yau compactifications of Landau-Ginzburg models”, Mat. Sb., 213:1 (2022), 95–118; Sb. Math., 213:1 (2022), 88–108
Citation in format AMSBIB
\Bibitem{Prz22}
\by V.~V.~Przyjalkowski
\paper On singular log Calabi-Yau compactifications of Landau-Ginzburg models
\jour Mat. Sb.
\yr 2022
\vol 213
\issue 1
\pages 95--118
\mathnet{http://mi.mathnet.ru/sm9510}
\crossref{https://doi.org/10.4213/sm9510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360108}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213...88P}
\transl
\jour Sb. Math.
\yr 2022
\vol 213
\issue 1
\pages 88--108
\crossref{https://doi.org/10.1070/SM9510}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772181900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128152675}
Linking options:
  • https://www.mathnet.ru/eng/sm9510
  • https://doi.org/10.1070/SM9510
  • https://www.mathnet.ru/eng/sm/v213/i1/p95
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:335
    Russian version PDF:49
    English version PDF:13
    Russian version HTML:138
    References:56
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024