Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 3, Pages 300–318
DOI: https://doi.org/10.1070/SM9601
(Mi sm9601)
 

On the cohomology rings of partially projective quaternionic Stiefel manifolds

G. E. Zhubanova, F. Yu. Popelenskiiab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: The quaternionic Stiefel manifold $V_{n,k}(\mathbb H)$ is the total space of a fibre bundle over the corresponding Grassmannian $G_{n,k}(\mathbb H)$. The group $\operatorname{Sp}(1)=S^3$ acts freely on the fibres of this bundle. The quotient space is called the quaternionic projective Stiefel manifold. Its real and complex analogues were actively studied earlier by a number of authors. A finite group acting freely on the three-dimensional sphere also acts freely and discretely on the fibres of the quaternionic Stiefel bundle. The corresponding quotient spaces are called partially projective Stiefel manifolds.
The cohomology rings of partially projective quaternionic Stiefel manifolds with coefficients in $\mathbb Z_p$, where $p$ is prime, are calculated.
Bibliography: 14 titles.
Keywords: projective Stiefel manifold, discrete free group actions on $S^3$.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00169-а
The research by F. Yu. Popelenskii was supported by the Russian Foundation for Basic Research (grant no. 19-01-00169-a).
Received: 23.04.2021 and 07.06.2021
Bibliographic databases:
Document Type: Article
MSC: 57T15, 55R10, 57S25
Language: English
Original paper language: Russian
Citation: G. E. Zhubanov, F. Yu. Popelenskii, “On the cohomology rings of partially projective quaternionic Stiefel manifolds”, Sb. Math., 213:3 (2022), 300–318
Citation in format AMSBIB
\Bibitem{ZhuPop22}
\by G.~E.~Zhubanov, F.~Yu.~Popelenskii
\paper On the cohomology rings of partially projective quaternionic Stiefel manifolds
\jour Sb. Math.
\yr 2022
\vol 213
\issue 3
\pages 300--318
\mathnet{http://mi.mathnet.ru//eng/sm9601}
\crossref{https://doi.org/10.1070/SM9601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461432}
\zmath{https://zbmath.org/?q=an:1494.57060}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..300Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000794985400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132388581}
Linking options:
  • https://www.mathnet.ru/eng/sm9601
  • https://doi.org/10.1070/SM9601
  • https://www.mathnet.ru/eng/sm/v213/i3/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:293
    Russian version PDF:78
    English version PDF:42
    Russian version HTML:151
    References:51
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024