Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 3, Pages 412–442
DOI: https://doi.org/10.1070/SM9578
(Mi sm9578)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields

V. P. Platonovab, V. S. Zhgoona, M. M. Petrunina

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We obtain a complete description of the fields $\mathbb K$ that are extensions of $\mathbb Q$ of degree at most $3$ and the cubic polynomials $f \in\mathbb K[x]$ such that the expansion of $\sqrt{f}$ into a continued fraction in the field of formal power series $\mathbb K((x))$ is periodic. We prove a finiteness theorem for cubic polynomials $f \in\mathbb K[x]$ with a periodic expansion of $\sqrt{f}$ for extensions of $\mathbb Q$ of degree at most $6$. We obtain a description of the periodic elements $\sqrt{f}$ for the cubic polynomials $f(x)$ defining elliptic curves with points of order $3 \le N\le 42$, $N \ne 37, 41$.
Bibliography: 19 titles.
Keywords: elliptic field, $S$-units, continued fractions, periodicity, torsion points.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FNEF-2021-0011
This paper was prepared within the framework of carrying out the state commission of the Ministry for Science and Higher Education of the Russian Federation (project no. FNEF-2021-0011).
Received: 16.03.2021 and 22.06.2021
Russian version:
Matematicheskii Sbornik, 2022, Volume 213, Number 3, Pages 139–170
DOI: https://doi.org/10.4213/sm9578
Bibliographic databases:
Document Type: Article
MSC: Primary 11J70; Secondary 11R27, 11R58
Language: English
Original paper language: Russian
Citation: V. P. Platonov, V. S. Zhgoon, M. M. Petrunin, “On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields”, Mat. Sb., 213:3 (2022), 139–170; Sb. Math., 213:3 (2022), 412–442
Citation in format AMSBIB
\Bibitem{PlaZhgPet22}
\by V.~P.~Platonov, V.~S.~Zhgoon, M.~M.~Petrunin
\paper On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials~$f$ over algebraic number fields
\jour Mat. Sb.
\yr 2022
\vol 213
\issue 3
\pages 139--170
\mathnet{http://mi.mathnet.ru/sm9578}
\crossref{https://doi.org/10.4213/sm9578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461437}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..412P}
\transl
\jour Sb. Math.
\yr 2022
\vol 213
\issue 3
\pages 412--442
\crossref{https://doi.org/10.1070/SM9578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000795171400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132447271}
Linking options:
  • https://www.mathnet.ru/eng/sm9578
  • https://doi.org/10.1070/SM9578
  • https://www.mathnet.ru/eng/sm/v213/i3/p139
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:455
    Russian version PDF:46
    English version PDF:52
    Russian version HTML:250
    References:46
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024