Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 11, Pages 1512–1529
DOI: https://doi.org/10.4213/sm9569e
(Mi sm9569)
 

This article is cited in 2 scientific papers (total in 2 papers)

On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle

D. S. Lubinsky

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
References:
Abstract: Let $\mu$ be a measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\{\varphi_{n}\}$ be the orthonormal polynomials for $\mu$ and $\{z_{jn}\}$ their zeros. Let $\mu$ be absolutely continuous in an arc $\Delta$ of the unit circle, with $\mu'$ positive and continuous there. We show that uniform boundedness of the orthonormal polynomials in subarcs $\Gamma$ of $\Delta$ is equivalent to certain asymptotic behaviour of their zeros inside sectors that rest on $\Gamma$. Similarly the uniform limit $\lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1$ is equivalent to related asymptotics for the zeros in such sectors.
Bibliography: 27 titles.
Keywords: orthogonal polynomials on the unit circle, bounds and asymptotics, zeros.
Funding agency Grant number
National Science Foundation DMS1800251
This research was supported by the National Science Foundation (grant DMS1800251).
Received: 18.02.2021 and 14.05.2021
Bibliographic databases:
Document Type: Article
MSC: 42C05
Language: English
Original paper language: Russian

§ 1. Introduction

Let $\mu$ be a finite positive Borel measure on $[-\pi ,\pi)$ (or, equivalently, on the unit circle) with infinitely many points in its support. Then we may define the orthonormal polynomials

$$ \begin{equation*} \varphi_{n}(z)=\kappa_{n}z^{n}+\dotsb, \qquad \kappa_{n}>0, \end{equation*} \notag $$
$n=0,1,2,\dots$, satisfying the orthonormality conditions
$$ \begin{equation*} \frac{1}{2\pi}\int_{-\pi}^{\pi}\varphi_{n}(z) \overline{\varphi_{m}(z)}\,d\mu (\theta)=\delta_{mn}, \end{equation*} \notag $$
where $z=e^{i\theta}$. We denote the zeros of $\varphi_{n}$ by $\{z_{jn}\}_{j=1}^{n}$. They lie inside the unit circle and may not be distinct.

Soviet and Russian mathematicians have been leading lights in the theory of orthogonal polynomials ever since Chebyshev laid the foundations. Many in Gonchar’s own school are world leaders, and their students continue that tradition. The celebrated work of Rakhmanov [18], [20], and Aptekarev, Denisov and Tulyakov [3], [4] on Steklov’s conjecture is just one of many examples. It is a privilege to pay tribute to Gonchar’s memory.

We shall assume that $\mu$ is regular in the sense of Stahl, Totik and Ullmann [25], so that

$$ \begin{equation*} \lim_{n\to \infty}\kappa_{n}^{1/n}=1. \end{equation*} \notag $$
This is true if, for example, $\mu'>0$ almost everywhere in $[-\pi,\pi)$, but there are pure jump and pure singularly continuous measures that are regular.

Many aspects of the zeros $\{z_{jn}\}$ have been studied down the years, for example, their distribution (often when projected onto the unit circle), and ‘clock spacing’ of zeros of paraorthogonal polynomials (see Ch. 8 of Simon’s monograph [23]). One result relevant to this paper is due to Nevai and Totik (see [17] and [23], Theorem 7.1.3). They relate the largest disc centred at the origin and containing all zeros of the orthonormal polynomials to analytic continuation of the Szegő function inside the unit circle. In this case $\mu'$ is infinitely differentiable on the unit circle. Another classic result of Mhaskar and Saff gives sufficient conditions in terms of the recurrence coefficients for the zero counting measures to converge weakly to the uniform distribution on the unit circle (see [15] and [23], Theorem 8.1.2). Breuer and Seelig [7] recently studied clock spacing of zeros of paraorthogonal polynomials, as did Simanek [21], [22] (see also the references there).

In a very interesting recent paper Bessonov and Denisov (see [6], Theorem 3) showed that the distance of the zeros to the unit circle is intimately related to the asymptotics of orthogonal polynomials. The following is a reformulation of one of their results.

Theorem 1.1. Let $\mu$ be a measure on the unit circle satisfying the Szegő condition

$$ \begin{equation*} \int_{-\pi}^{\pi}\log \mu'(e^{it})\,dt>-\infty. \end{equation*} \notag $$
For almost every $\zeta$ with $|\zeta|=1$, the following are equivalent:

(I)

$$ \begin{equation*} \lim_{n\to \infty}|\varphi_{n}(\zeta) |^{2}\mu'(\zeta)=1; \end{equation*} \notag $$

(II)

$$ \begin{equation*} \lim_{n\to \infty}n\Bigl(\inf_{1\leqslant j\leqslant n}|\zeta -z_{jn}|\Bigr)=\infty. \end{equation*} \notag $$

We prove related equivalences for local bounds and asymptotics but for regular, rather than Szegő, measures.

Theorem 1.2. Let $\mu$ be a finite positive Borel measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\Delta$ be an arc of the unit circle in which $\mu$ is absolutely continuous, while $\mu'$ is positive and continuous there. The following are equivalent:

(I) in every proper subarc $\Gamma$ of $\Delta$,

$$ \begin{equation*} \lim_{n\to \infty}\biggl(\inf \biggl\{n(1-|z_{jn}|)\colon z_{jn}\neq 0,\, \frac{z_{jn}}{|z_{jn}|}\in \Gamma \biggr\}\biggr)=\infty; \end{equation*} \notag $$

(II) in every proper subarc $\Gamma$ of $\Delta$, as $n\to \infty$, uniformly for $z\in \Gamma$,

$$ \begin{equation} \lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1. \end{equation} \tag{1.1} $$

Remarks 1.1. (i) By a proper subarc, we mean that both endpoints of $\Gamma$ are at a positive distance to the endpoints of $\Delta$. All arcs in this paper are assumed to be closed arcs, so contain their endpoints.

(ii) We note that if $\mu$ is absolutely continuous on the whole unit circle, while $\mu'$ is positive and continuous there, then by applying the above result to two subarcs, we obtain equivalence on the whole unit circle. As far as the author is aware, even that is new.

(iii) The asymptotics of orthogonal polynomials on the unit circle have been studied for at least a century, and there is an extensive literature. If $\log \mu'$ is integrable over the unit circle, then there is an $L_{2}$ asymptotic for $\varphi_{n}$ (see [8], Ch. V, [9], [23], p. 132, and [26], Ch. 10). There are many sufficient conditions for pointwise asymptotics on subarcs of the unit circle, and their real line analogues, and we cannot hope to review these here. The most general result for pointwise asymptotics on the unit circle is almost certainly that of Badkov [5]. He showed that if $\log \mu'$ is integrable on the unit circle and, in some subarc, $\mu$ is absolutely continuous, while $\mu'$ satisfies there a Dini-Lipschitz condition, then we have a uniform asymptotic involving the Szegő function, and hence also (1.1).

One of the particularly significant results for non-Szegő weights is due to Rakhmanov (see [19], Theorem 4): if $\mu$ is absolutely continuous on the unit circle, and $\mu'$ satisfies a Dini-Lipschitz condition on the unit circle, then (1.1) holds uniformly on each subarc of the circle where $\mu'$ is bounded below by a positive constant.

For bounds, we prove the following.

Theorem 1.3. Let $\mu$ be a finite positive Borel measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\Delta$ be an arc of the unit circle in which $\mu $ is absolutely continuous, while $\mu'$ is positive and continuous there. The following are equivalent:

(I) in every proper subarc $\Gamma$ of $\Delta$ there exists $C_{1}>0$ such that for $n\geqslant 1$,

$$ \begin{equation*} \inf \biggl\{n(1-|z_{jn}|) \colon z_{jn}\neq 0,\, \frac{z_{jn}}{|z_{jn}|}\in \Gamma \biggr\} \geqslant C_{1}; \end{equation*} \notag $$

(II) in every proper subarc $\Gamma$ of $\Delta$ there exists $C_{2}>0$ such that for $n\geqslant 1$,

$$ \begin{equation*} \|\varphi_{n}\|_{L_{\infty}(\Gamma)}\leqslant C_{2}. \end{equation*} \notag $$

Remarks 1.2. (i) Again, if $\mu$ is absolutely continuous on the whole unit circle, while $\mu'$ is positive and continuous there, then by applying the above result to two subarcs, we obtain equivalence on the whole unit circle.

(ii) Bounds on orthogonal polynomials have also been investigated for a century, with one of the celebrated problems being Steklov’s conjecture. It was Rakhmanov who resolved the conjecture (see [18], [20]), with definitive later contributions by Ambroladze [1], [2], and Aptekarev, Denisov and Tulyakov [3], [4]. There have been many who have contributed in a major way to the broader issue of bounds — for example, Badkov [5], Freud [8], Geronimus [9], Korous and Nevai (see [16]). Again, this is a very incomplete list.

(iii) The main ideas underlying the results of this paper are universality limits for reproducing kernels (see [10], [12] and [27]) and local limits for ratios of orthogonal polynomials (see [13]).

(iv) For orthogonal polynomials on the real line, the analogous result to Theorem 1.3 involves the distance between zeros of orthogonal polynomials of successive degrees (see [11]).

We close this section with more notation. The sin kernel is

$$ \begin{equation*} \mathbb{S}(u)=\frac{\sin \pi u}{\pi u}. \end{equation*} \notag $$
We let
$$ \begin{equation*} \varphi_{n}^{\ast}(z)=z^{n}\overline{\varphi_{n}\biggl(\frac{1}{\overline{z}}\biggr)}. \end{equation*} \notag $$
The $n$th reproducing kernel for $\mu$ is
$$ \begin{equation} K_{n}(z,u)=\sum_{j=0}^{n-1}\varphi_{j}(z) \overline{\varphi_{j}(u)}. \end{equation} \tag{1.2} $$
The Christoffel-Darboux formula asserts that for $z\neq u$,
$$ \begin{equation} K_{n}(z,u)=\frac{\overline{\varphi_{n}^{\ast}(u)}\varphi_{n}^{\ast}(z) -\overline{\varphi_{n}(u)}\varphi_{n}(z)}{1-\overline{u}z} \end{equation} \tag{1.3} $$
(see [23], p. 954). We let
$$ \begin{equation} R_{n}(z)=\sum_{j=1}^{n}\frac{1-|z_{jn}|^{2}}{|z-z_{jn}|^{2}} \end{equation} \tag{1.4} $$
and
$$ \begin{equation} g_{n}(z)=\frac{z\varphi_{n}'(z)}{n\varphi_{n}(z)}. \end{equation} \tag{1.5} $$
If $z_{jn}=0$, then we set $\tau_{jn}=0$, while if $z_{jn}\neq 0$, then we set
$$ \begin{equation} \tau_{jn}=\frac{z_{jn}}{|z_{jn}|}. \end{equation} \tag{1.6} $$

Throughout, $C,C_{1},C_{2},\dots$ denote positive constants independent of $n$, $z$, $\zeta$ and polynomials $P$ of degree $\leqslant n$. The same symbol need not denote the same constant in different occurrences. For sequences $\{x_{n}\}$ and $\{y_{n}\}$ of nonzero real numbers we write

$$ \begin{equation*} x_{n}\sim y_{n} \end{equation*} \notag $$
if there exists $C>1$ independent of $n$, but possibly depending on the sequences, such that
$$ \begin{equation*} C^{-1}\leqslant \frac{x_{n}}{y_{n}}\leqslant C \quad\text{for all } n\geqslant 1. \end{equation*} \notag $$

This paper is organized as follows: in § 2 we present Theorems 2.1 and 2.2, which state more equivalences than those above. In § 3 we present four preliminary lemmas. We prove Theorem 2.1 in § 4 and Theorem 2.2 in § 5.

§ 2. Further equivalences

Theorems 1.2 and 1.3 are special cases, respectively, of Theorems 2.1 and 2.2 below.

Theorem 2.1. Let $\mu$ be a finite positive Borel measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\Delta$ be an arc of the unit circle in which $\mu$ is absolutely continuous, while $\mu'$ is positive and continuous there. The following are equivalent:

(a) uniformly for $z$ in proper subarcs of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1; \end{equation} \tag{2.1} $$

(b) uniformly for $z$ in proper subarcs of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}\frac{1}{n}\sum_{j=1}^{n}\frac{1-|z_{jn}|^{2}}{|z-z_{jn}|^{2}}=1; \end{equation} \tag{2.2} $$

(c) uniformly for $z$ in proper subarcs of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}\operatorname{Re}\biggl(\frac{z\varphi_{n}'(z)}{n\varphi_{n}(z)}\biggr)=1; \end{equation} \tag{2.3} $$

(d) uniformly for $z$ in proper subarcs of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}\frac{z\varphi_{n}'(z)}{n\varphi_{n}(z)}=1; \end{equation} \tag{2.4} $$

(e) uniformly for $z$ in proper subarcs of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}\frac{\varphi_{n}(ze^{i\pi /n})}{\varphi_{n}(z)}=-1; \end{equation} \tag{2.5} $$

(f) uniformly for $z$ in proper subarcs of $\Delta$ and for $u$ in compact subsets of $\mathbb{C}$,

$$ \begin{equation} \lim_{n\to \infty}\frac{\varphi_{n}(z(1+u/n))}{\varphi_{n}(z)}=e^{u}; \end{equation} \tag{2.6} $$

(g) in proper subarcs $\Gamma$ of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}\biggl(\inf \biggl\{n(1-|z_{jn}|) \colon z_{jn}\neq 0,\frac{z_{jn}}{|z_{jn}|}\in \Gamma \biggr\}\biggr)=\infty; \end{equation} \tag{2.7} $$

(h) uniformly for $z$ in proper subarcs of $\Delta$,

$$ \begin{equation} \lim_{n\to \infty}\frac{1}{n^{2}}\sum_{j=1}^{n}\frac{1}{|z-z_{jn}|^{2}}=0. \end{equation} \tag{2.8} $$

Remarks 2.1. (i) Weaker versions of parts of Theorem 2.1 appeared in Theorem 1.2 in [13], notably (b), (d), (e) and (f), since we also made an unnecessary assumption (1.7) in [13] about $\operatorname{Im}(\varphi_{n}(ze^{\pm i\pi /n}) /\varphi_{n}(z))$.

(ii) There was unfortunately an error in Lemma 4.2, (a), in [13] that led to gaps in proofs below in that paper. These gaps were corrected in [14].

Theorem 2.2. Let $\mu$ be a finite positive Borel measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\Delta$ be an arc of the unit circle in which $\mu$ is absolutely continuous, while $\mu'$ is positive and continuous there. The following are equivalent:

(a) for every proper subarc $\Gamma$ of $\Delta$,

$$ \begin{equation} \sup_{n\geqslant 1}\|\varphi_{n}\|_{L_{\infty}(\Gamma)}<\infty; \end{equation} \tag{2.9} $$

(b) for every proper subarc $\Gamma$ of $\Delta$,

$$ \begin{equation} \inf_{n\geqslant 1}\inf_{z\in \Gamma}\frac{1}{n} \sum_{j=1}^{n}\frac{1-|z_{jn}|^{2}}{|z-z_{jn}| ^{2}}\geqslant C; \end{equation} \tag{2.10} $$

(c) for every proper subarc $\Gamma$ of $\Delta$, there exists $n_{0}$ such that

$$ \begin{equation} \inf_{n\geqslant n_{0}}\inf_{z\in \Gamma}\biggl|\operatorname{Re}\biggl(\frac{z\varphi_{n}'(z)}{n\varphi_{n}(z)} -\frac{1}{2}\biggr) \biggr|\geqslant C; \end{equation} \tag{2.11} $$

(d) for every proper subarc $\Gamma$ of $\Delta$, there exists $n_{0}$ such that

$$ \begin{equation} \inf_{n\geqslant n_{0}}\inf_{z\in \Gamma}\biggl|\operatorname{Re} \biggl(\frac{\varphi_{n}(ze^{\pm i\pi /n})}{\varphi_{n}(z)}\biggr)\biggr|\geqslant C; \end{equation} \tag{2.12} $$

(e) for every proper subarc $\Gamma$ of $\Delta$,

$$ \begin{equation} \inf \biggl\{n(1-|z_{jn}|) \colon n\geqslant 1,\, z_{jn}\neq 0,\frac{z_{jn}}{|z_{jn}|}\in \Gamma \biggr\} \geqslant C; \end{equation} \tag{2.13} $$

(f) for every proper subarc $\Gamma$ of $\Delta$,

$$ \begin{equation} \sup_{n\geqslant 1}\,\sup_{z\in \Gamma}\frac{1}{n^{2}} \sum_{j=1}^{n}\frac{1}{|z-z_{jn}|^{2}}\leqslant C. \end{equation} \tag{2.14} $$

§ 3. Preliminary lemmas

Throughout, we assume the hypotheses of Theorem 1.2, namely, that $\mu$ is regular in the sense of Stahl, Totik and Ullmann, while it is absolutely continuous in $\Delta$, with $\mu'$ positive and continuous there. We first recall some asymptotics for Christoffel functions and universality and local limits.

Lemma 3.1. Let $\Gamma$ be a proper subarc of $\Delta$. Then the following hold.

(a) Uniformly for $z\in \Gamma$,

$$ \begin{equation} \lim_{n\to \infty}\frac{1}{n}K_{n}(z,z) \mu'(z)=1. \end{equation} \tag{3.1} $$

(b) Uniformly for $z\in \Gamma$ and $a$, $b$ in compact subsets of $\mathbb{C}$,

$$ \begin{equation} \lim_{n\to \infty}\frac{K_{n}(z(1+i2\pi a/n),z(1+i2\pi \overline{b}/n))}{K_{n}(z,z)} =e^{i\pi (a-b)}\mathbb{S}(a-b). \end{equation} \tag{3.2} $$

(c) Let $\{\zeta_{n}\}\subset \Gamma$. Assume that

$$ \begin{equation} \sup_{n\geqslant 1}\frac{1}{n}\biggl|\sum_{j=1}^{n}\frac{1}{\zeta_{n}-z_{jn}}\biggr|<\infty \quad\textit{and}\quad\sup_{n\geqslant 1}\frac{1}{n^{2}} \sum_{j=1}^{n}\frac{1}{|\zeta_{n}-z_{jn}|^{2}}<\infty. \end{equation} \tag{3.3} $$
Then from every infinite sequence of positive integers we can choose an infinite subsequence $\mathcal{S}$ such that uniformly for $u$ in compact subsets of $\mathbb{C}$,
$$ \begin{equation} \lim_{n\to \infty,\,n\in \mathcal{S}}\frac{\varphi_{n} (\zeta_{n}(1+u/n))}{\varphi_{n}(\zeta_{n})}=e^{u}+C(e^{u}-1), \end{equation} \tag{3.4} $$
where
$$ \begin{equation} C=\lim_{n\to \infty,\, n\in \mathcal{S}}\biggl(\frac{\zeta_{n}}{n}\, \frac{\varphi_{n}'(\zeta_{n})}{\varphi_{n}(\zeta_{n})}-1\biggr). \end{equation} \tag{3.5} $$

Proof. (a) See, for example, [24], Theorem 2.16.1.

(b) See, for example, [10], Theorem 6.3, or [24], Theorem 2.16.1.

(c) This follows immediately from Theorem 1.3 in [13] as we have the universality limit (3.2). We note that there was a mistake in Lemma 4.2, (a), in [13] that was corrected in [14]. However, the mistake did not in any way affect the proof of Theorem 1.3 in [13].

Some of the assertions in the following lemma appeared in [13], but we include proofs for the reader’s convenience. Recall that $R_{n}$ and $g_{n}$ were defined, respectively, by (1.4) and (1.5).

Lemma 3.2. Let $\Gamma$ be a proper subarc of $\Delta$. Then the following hold.

(a) For $|z|=1$,

$$ \begin{equation} \frac{1}{n}R_{n}(z)=\operatorname{Re}[ 2g_{n}(z) -1]. \end{equation} \tag{3.6} $$

(b) Uniformly for $z\in \Gamma$ and fixed real $\alpha$,

$$ \begin{equation} \lim_{n\to \infty}\operatorname{Im}\bigl[ e^{i\pi \alpha}\varphi_{n}(z) \overline{\varphi_{n}(ze^{2\pi i\alpha /n})}\bigr] \mu'(z)=-\sin \pi \alpha. \end{equation} \tag{3.7} $$

(c) Uniformly for $z\in \Gamma$ and fixed real $\alpha$,

$$ \begin{equation} \begin{aligned} \, \notag &\lim_{n\to \infty}\biggl\{\operatorname{Re}\bigl[ e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(ze^{2\pi i\alpha /n})}\bigr] \frac{1}{n}R_{n}(ze^{2\pi i\alpha /n}) \mu'(z) \\ &\qquad\qquad-(2\sin \pi \alpha) (\operatorname{Im}g_{n}(ze^{2\pi i\alpha /n})) \biggr\}=\cos \pi \alpha. \end{aligned} \end{equation} \tag{3.8} $$

(d) Uniformly for $z\in \Gamma$,

$$ \begin{equation} \lim_{n\to \infty}\frac{1}{n}R_{n}(z) |\varphi_{n}(z) |^{2}\mu'(z)=1. \end{equation} \tag{3.9} $$

(e) Uniformly for $z\in \Gamma$ and fixed real $\alpha$,

$$ \begin{equation} (1-e^{-2\pi i\alpha}) g_{n}(z)=1-\frac{\varphi_{n} (ze^{-2\pi i\alpha /n})}{\varphi_{n}(z)}(1+o(1)) +o(1). \end{equation} \tag{3.10} $$

Proof. Throughout this proof we assume that
$$ \begin{equation*} \zeta=ze^{2\pi i\alpha /n} \end{equation*} \notag $$
with $\alpha$ real or complex.

(a) Elementary manipulations show that

$$ \begin{equation*} \frac{1-|z_{jn}|^{2}}{|z-z_{jn}|^{2}}=2\operatorname{Re}\biggl(\frac{z}{z-z_{jn}}\biggr) -1. \end{equation*} \notag $$
Dividing by $n$ and adding for $j=1,2,\dots,n$ gives (3.6).

(b) The Christoffel-Darboux formula (1.3) and the universality limit (3.2) (as well as the uniformity of that limit) give uniformly for $\alpha$ in compact subsets of $\mathbb{C}$,

$$ \begin{equation} \begin{aligned} \, \notag &\lim_{n\to \infty}\frac{\overline{\varphi_{n}^{\ast}(z)}\varphi_{n}^{\ast}(\zeta) -\overline{\varphi_{n}(z)}\varphi_{n}(\zeta)}{[ 1-\overline{z}\zeta ] K_{n}(z,z)} =\lim_{n\to \infty}\frac{K_{n}(\zeta,z)}{K_{n}(z,z)} \\ &\qquad =\lim_{n\to \infty}\frac{K_{n}(z(1+\frac{2\pi i\alpha}{n}[ 1+o(1) ]),z)}{K_{n}(z,z)}=e^{i\pi \alpha}\mathbb{S}(\alpha). \end{aligned} \end{equation} \tag{3.11} $$
Here by (3.1),
$$ \begin{equation*} \lim_{n\to \infty}[ 1-\overline{z}\zeta ] K_{n}(z,z)=-2\pi i\alpha \mu'(z) ^{-1}. \end{equation*} \notag $$
Thus,
$$ \begin{equation} \begin{aligned} \, \notag &\lim_{n\to \infty}[\, \overline{\varphi_{n}^{\ast}(z)}\varphi_{n}^{\ast}(\zeta) -\overline{\varphi _{n}(z)}\varphi_{n}(\zeta) ] \mu'(z) \\ &\qquad =-2\pi i\alpha e^{i\pi \alpha}\mathbb{S}(\alpha) =-2ie^{\pi i\alpha}\sin \pi \alpha=1-e^{2\pi i\alpha}. \end{aligned} \end{equation} \tag{3.12} $$
Next, if $\alpha$ is real, then
$$ \begin{equation*} \overline{\varphi_{n}^{\ast}(z)}\varphi_{n}^{\ast}(\zeta)=e^{2\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}, \end{equation*} \notag $$
so combining this and (3.12) gives
$$ \begin{equation*} \lim_{n\to \infty}e^{\pi i\alpha}\bigl\{e^{i\pi \alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{-\pi i\alpha} \overline{\varphi_{n}(z)}\varphi_{n}(\zeta) \bigr\} \mu'(z) =-2ie^{\pi i\alpha}\sin \pi\alpha. \end{equation*} \notag $$
Dividing by $2ie^{\pi i\alpha}$ gives (3.7).

(c) We go back to (3.12), which holds uniformly for $\alpha$ in compact subsets of $\mathbb{C}$. This uniformity allows us to differentiate with respect to $\alpha$: after cancelling a factor of $2\pi i$, we obtain

$$ \begin{equation} \lim_{n\to \infty}\bigl[\, \overline{\varphi_{n}^{\ast}(z)}\varphi_{n}^{\ast \prime}(\zeta) -\overline{\varphi_{n}(z)}\varphi_{n}'(\zeta) \bigr] \frac{\zeta}{n}\mu'(z)=-e^{2\pi i\alpha}. \end{equation} \tag{3.13} $$
Now we again specialize to real $\alpha$, and use that for $|\zeta| =1$,
$$ \begin{equation*} \varphi_{n}^{\ast \prime}(\zeta)=n\zeta ^{n-1}\overline{\varphi_{n}(\zeta)}-\zeta ^{n-2}\overline{\varphi_{n}'(\zeta)}, \end{equation*} \notag $$
so that using $\overline{z}\zeta =e^{2\pi i\alpha/n}$ and recalling the definition (1.5) of $g_{n}$
$$ \begin{equation*} \overline{\varphi_{n}^{\ast}(z)}\varphi_{n}^{\ast \prime}(\zeta) \frac{\zeta}{n} =e^{2\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{2\pi i\alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}\overline{g_{n}(\zeta)}. \end{equation*} \notag $$
Substituting into (3.13), and dividing by $e^{\pi i\alpha}$,
$$ \begin{equation} \begin{aligned} \, \notag &\lim_{n\to \infty}\bigl[ e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)} -e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)} \overline{g_{n}(\zeta)} \\ &\qquad\qquad-e^{-\pi i\alpha}\overline{\varphi_{n}(z)}\varphi_{n}(\zeta) g_{n} (\zeta) \bigr] \mu'(z) =-e^{\pi i\alpha} \end{aligned} \end{equation} \tag{3.14} $$
or
$$ \begin{equation*} \lim_{n\to \infty}\bigl[ e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-2\operatorname{Re}\{e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}\overline{g_{n}(\zeta)}\} \bigr] \mu'(z) =-e^{\pi i\alpha}. \end{equation*} \notag $$
Taking real parts,
$$ \begin{equation*} \lim_{n\to \infty}\operatorname{Re}\bigl[ e^{\pi i\alpha}\varphi _{n}(z) \overline{\varphi_{n}(\zeta)}\{1-2\overline{g_{n}(\zeta)}\} \bigr] \mu'(z)=-\cos \pi \alpha. \end{equation*} \notag $$
Then using (3.7),
$$ \begin{equation*} \begin{aligned} \, &\lim_{n\to \infty}\bigl\{\operatorname{Re}\bigl[ e^{\pi i\alpha}\varphi _{n}(z) \overline{\varphi_{n}(\zeta)}\mu'(z) \bigr] \operatorname{Re}[ 1-2g_{n}(\zeta) ] +2\sin \pi \alpha \operatorname{Im}g_{n}(\zeta) \bigr\} \\ &\qquad =-\cos \pi \alpha. \end{aligned} \end{equation*} \notag $$
Finally apply (3.6).

(d) Here we set $\alpha =0$ in (3.8).

(e) From (a),

$$ \begin{equation*} \overline{g_{n}(\zeta)}=2\operatorname{Re}g_{n}(\zeta)-g_{n}(\zeta)=\frac{1}{n}R_{n}(\zeta) +1-g_{n}(\zeta). \end{equation*} \notag $$
We substitute this into (3.14) and cancel a term:
$$ \begin{equation*} \begin{aligned} \, &\lim_{n\to \infty}\biggl[-e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}\frac{1}{n}R_{n}(\zeta ) \\ &\qquad\qquad +g_{n}(\zeta) \bigl\{e^{\pi i\alpha}\varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{-\pi i\alpha}\overline{\varphi_{n}(z)}\varphi_{n}(\zeta) \bigr\} \biggr]\mu'(z) =-e^{\pi i\alpha}. \end{aligned} \end{equation*} \notag $$
Using (3.9) and (3.7), and continuity of $\mu'$, we obtain
$$ \begin{equation*} \begin{aligned} \, &\lim_{n\to \infty}\biggl[ -e^{\pi i\alpha}\frac{\varphi_{n}(z)}{\varphi_{n}(\zeta)}(1+o(1) ) +g_{n}(\zeta) 2i(-\sin \pi \alpha) \biggr] =-e^{\pi i\alpha} \\ &\qquad\Longrightarrow\quad \lim_{n\to \infty}\biggl[ \frac{\varphi_{n}(z)}{\varphi_{n}(\zeta)}(1+o(1)) +g_{n}(\zeta) 2ie^{-\pi i\alpha}\sin \pi \alpha \biggr]=1. \end{aligned} \end{equation*} \notag $$
Because of uniformity, we can substitute $ze^{-2\pi i\alpha /n}$ for $z$ so that $\zeta$ becomes $z$.

Lemma 3.2 is proved.

We now prove parts of Theorems 2.1 and 2.2. Recall that $\tau_{jn}=z_{jn}/|z_{jn}|$ as in (1.6).

Lemma 3.3. (a) The following are equivalent:

(b) The following are equivalent:

Proof. (a), i) $\Rightarrow$ ii). Let $\Gamma$ and $\Gamma_{1}$ be proper subarcs of $\Delta$ such that $\Gamma$ is a proper subarc of $\Gamma_{1}$. In particular, we assume that the distance from both endpoints of $\Gamma$ to the endpoints of $\Gamma_{1}$ is positive. We have for $z\in \Gamma$,
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1}{|z-z_{jn}|^{2}} \leqslant \frac{1}{Cn}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1-|z_{jn}|^{2}}{|z-z_{jn}|^{2}} \leqslant \frac{1}{Cn}R_{n}(z) \leqslant C_{1}|\varphi_{n}(z) |^{-2} \end{equation*} \notag $$
by (3.9) and positivity and continuity of $\mu'$. Next, we know from (3.7) for $\alpha=1/2$, that
$$ \begin{equation*} |\varphi_{n}(z) |\,|\varphi_{n}(ze^{i\pi /n}) |\mu'(z)\geqslant 1+o(1), \end{equation*} \notag $$
so it follows that either
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1}{|z-z_{jn}|^{2}}\leqslant C_{1}, \end{equation*} \notag $$
or
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1}{|ze^{i\pi /n}-z_{jn}|^{2}}\leqslant C_{1} \end{equation*} \notag $$
(or possibly both). But because of our hypothesis, for $\tau_{jn}\in \Gamma_{1}$ and $z\in \Gamma$,
$$ \begin{equation*} \biggl|\frac{z-z_{jn}}{ze^{i\pi /n}-z_{jn}}\biggr| =\biggl|1+\frac{z(1-e^{i\pi /n})}{ze^{i\pi /n}-z_{jn}}\biggr| \leqslant 1+\frac{2\sin (\pi /(2n))}{1-|z_{jn}|}\leqslant C_{2}, \end{equation*} \notag $$
while a similar bound holds for the reciprocal. So for $z\in \Gamma$,
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1}{|z-z_{jn}|^{2}}\leqslant C_{3}. \end{equation*} \notag $$
Then also for the remaining terms, as the distance from the boundary of $\Gamma$ to that of $\Gamma_{1}$ is positive, and $z\in \Gamma$,
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\notin \Gamma_{1}}\frac{1}{|z-z_{jn}|^{2}} \leqslant \frac{C_{4}n}{n^{2}}=o(1). \end{equation*} \notag $$
Adding the two estimates gives the result.

(a), ii) $\Rightarrow$ i). Choosing $z=\tau_{jn}\in \Gamma$ gives

$$ \begin{equation*} \frac{1}{n^{2}(1-|z_{jn}|) ^{2}} =\frac{1}{n^{2}|z-z_{jn}|^{2}}\leqslant \frac{1}{n^{2}}\sum_{k=1}^{n}\frac{1}{|z-z_{kn}|^{2}}\leqslant C \end{equation*} \notag $$
by our hypothesis.

(b), i) $\Rightarrow $ ii). Let $\Gamma$ and $\Gamma_{1}$ be as above. For $z\in \Gamma$,

$$ \begin{equation*} \begin{aligned} \, \frac{1}{n^{2}}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1}{|z-z_{jn}|^{2}} &\leqslant \biggl(\frac{1}{n}\sum_{\tau_{jn}\in\Gamma_{1}}\frac{1-|z_{jn}|^{2}}{|z-z_{jn}|^{2}}\biggr) \frac{1}{\inf_{\tau_{jn}\in \Gamma _{1}}n(1-|z_{jn}|^{2})} \\ &=o\biggl(\frac{1}{n}R_{n}(z)\biggr). \end{aligned} \end{equation*} \notag $$
We can now proceed as in (a).

(b), ii) $\Rightarrow $ i). Again, we proceed much as in (a).

Lemma 3.3 is proved.

Lemma 3.4. Assume that in every proper subarc $\Gamma$ of $\Delta$,

$$ \begin{equation*} \sup_{n\leqslant 1}\|\varphi_{n}\|_{L_{\infty}(\Gamma)}<\infty. \end{equation*} \notag $$
Then in every proper subarc $\Gamma$ of $\Delta$ there exists $C>0$ such that for $n\geqslant 1$, $z_{jn}\neq 0$ and $\tau_{jn}\in \Gamma$,
$$ \begin{equation*} n(1-|z_{jn}|) \geqslant C. \end{equation*} \notag $$

Proof. Let $\Gamma$ be a proper subarc of $\Delta$. Suppose the conclusion is false. Then we can choose an infinite subsequence $\mathcal{S}$ of positive integers and, for $j=j(n)\in \mathcal{S}$, can choose $z_{jn}$ with $\tau_{jn}=z_{jn}/|z_{jn}|\in \Gamma$ such that
$$ \begin{equation*} n(1-|z_{jn}|) \to 0. \end{equation*} \notag $$
Write
$$ \begin{equation*} z_{jn}=\tau_{jn}\biggl(1+2\pi i\frac{\alpha_{n}}{n}\biggr) \quad\text{and}\quad u=\tau_{jn}\biggl(1+2\pi i\frac{\overline{v}}{n}\biggr), \end{equation*} \notag $$
where $v=v(n)$, that is, $v$ depends on $n$ and $\alpha_{n}\to 0$ as $n\to \infty$. Then from the universality limit (3.2) (which by our assumptions holds in a larger arc than $\Gamma$), uniformly for $v$ in compact sets,
$$ \begin{equation} \frac{K_{n}(z_{jn},u)}{K_{n}(\tau_{jn},\tau_{jn})} =e^{i\pi (\alpha_{n}-v)}\mathbb{S}(\alpha_{n}-v) +o(1) =e^{-i\pi v}\mathbb{S}(v) +o(1). \end{equation} \tag{3.15} $$
Next from the Christoffel-Darboux formula (1.3),
$$ \begin{equation} \overline{\varphi_{n}^{\ast}(u)}\varphi_{n}^{\ast}(z_{jn}) =\bigl\{K_{n}(\tau_{jn},\tau_{jn}) (1-\overline{u}z_{jn}) \bigr\} \frac{K_{n}(z_{jn},u)}{K_{n}(\tau_{jn},\tau_{jn})}, \end{equation} \tag{3.16} $$
and setting $u=\tau_{jn}$, so that $v=0$ in both formulae, and using (3.1), as well as the fact that $n(1-|z_{jn}|)\to 0$, gives
$$ \begin{equation} \begin{aligned} \, \notag \overline{\varphi_{n}^{\ast}(\tau_{jn})}\varphi_{n}^{\ast}(z_{jn}) &=K_{n}(\tau_{jn},\tau_{jn}) (1-|z_{jn}|) \frac{K_{n}(z_{jn},\tau_{jn})}{K_{n}(\tau_{jn},\tau_{jn})} \\ &=o(1) (1+o(1))=o(1). \end{aligned} \end{equation} \tag{3.17} $$
Now apply (3.15) and (3.16) with $u=\tau_{jn}e^{i\pi /n}$, so that in $u$ above we have ${v=1/2+o(1)}$ and
$$ \begin{equation*} \frac{K_{n}(z_{jn},u)}{K_{n}(\tau_{jn},\tau_{jn})} =e^{-i\pi /2}\mathbb{S}\biggl(\frac{1}{2}\biggr) +o(1), \end{equation*} \notag $$
while
$$ \begin{equation*} \begin{aligned} \, &\overline{\varphi_{n}^{\ast}(\tau_{jn}e^{i\pi /n})}\varphi_{n}^{\ast}(z_{jn}) \\ &\qquad =\biggl\{K_{n}(\tau_{jn},\tau_{jn}) \biggl(1-e^{-i\pi /n} \biggl[ 1+2\pi i\frac{\alpha_{n}}{n}\biggr]\biggr) \biggr\} \frac{K_{n}(z_{jn},u)}{K_{n}(\tau_{jn},\tau_{jn})} \\ &\qquad =\biggl\{K_{n}(\tau_{jn},\tau_{jn}) \biggl(1-e^{-i\pi/n} +o\biggl(\frac{1}{n}\biggr)\biggr) \biggr\} \biggl\{e^{-i\pi /2}\mathbb{S}\biggl(\frac{1}{2}\biggr) +o(1) \biggr\}, \end{aligned} \end{equation*} \notag $$
so that using (3.1),
$$ \begin{equation*} |\varphi_{n}^{\ast}(\tau_{jn}e^{i\pi /n}) \varphi_{n}^{\ast}(z_{jn}) |\sim 1. \end{equation*} \notag $$
Dividing (3.17) by this, gives
$$ \begin{equation*} \biggl|\frac{\varphi_{n}(\tau_{jn})}{\varphi_{n}(\tau_{jn}e^{i\pi /n})}\biggr| =\biggl|\frac{\varphi_{n}^{\ast}(\tau_{jn})}{\varphi_{n}^{\ast} (\tau_{jn}e^{i\pi /n})}\biggr|=o(1). \end{equation*} \notag $$
But from (3.7) for $\alpha=1/2$,
$$ \begin{equation*} |\varphi_{n}(\tau_{jn}e^{i\pi /n}) \varphi _{n}(\tau_{jn}) |\geqslant 1+o(1), \end{equation*} \notag $$
so
$$ \begin{equation*} |\varphi_{n}(\tau_{jn}e^{i\pi /n}) |^{2} =\biggl|\frac{\varphi_{n}(\tau_{jn})}{\varphi_{n}(\tau_{jn}e^{i\pi /n})}\biggr|^{-1} \bigl|\varphi_{n}(\tau_{jn}e^{i\pi /n}) \varphi_{n}(\tau_{jn})\bigr| \to \infty\quad\text{as } n\to \infty, \end{equation*} \notag $$
contradicting the assumed boundedness of $\{\varphi_{n}\}$.

Lemma 3.4 is proved.

§ 4. Proof of Theorem 2.1

We show that assertions (a)–(h) of Theorem 2.1 are equivalent.

(a) $\Leftrightarrow $ (b). This is immediate from (3.9).

(b) $\Leftrightarrow $ (c). This is immediate from identity (3.6).

(c) $\Leftrightarrow $ (d). It is immediate that (2.4) $\Rightarrow$ (2.3). Now assume that (2.3) holds. We must show that $\operatorname{Im}g_{n}(z)\to 0$ as $n\to \infty$, uniformly in $\Gamma$. From the established equivalence (b) $\Leftrightarrow$ (c) we have (2.2), so from (3.8) with $\alpha=1/2$, and (3.9),

$$ \begin{equation} \lim_{n\to \infty}\bigl\{-\operatorname{Im} [ \varphi_{n}(z) \overline{\varphi_{n}(ze^{i\pi /n})}\mu'(z) ] -2(\operatorname{Im}g_{n}(ze^{\pi i/n})) \bigr\}=0. \end{equation} \tag{4.1} $$
Next, we have already proved that (c) is equivalent to (a), so using (2.1) for ${\zeta =z,ze^{i\pi /n}}$ and continuity of $\mu'$ we have
$$ \begin{equation*} \lim_{n\to \infty}|\varphi_{n}(z) \overline{\varphi_{n}(ze^{i\pi /n})}|\mu'(z)=1, \end{equation*} \notag $$
while from (3.7) for $\alpha=1/2$,
$$ \begin{equation*} \lim_{n\to \infty}\operatorname{Re}\bigl[ \varphi_{n}(z) \overline{\varphi_{n}(ze^{i\pi /n})}\bigr] \mu'(z)=-1. \end{equation*} \notag $$
Hence
$$ \begin{equation*} \lim_{n\to \infty}\operatorname{Im}\bigl[ \varphi_{n}(z) \overline{\varphi_{n}(ze^{i\pi /n})}\bigr] \mu'(z)=0. \end{equation*} \notag $$
Then (4.1) gives
$$ \begin{equation} \lim_{n\to \infty}\operatorname{Im}g_{n}(ze^{\pi i/n})=0. \end{equation} \tag{4.2} $$
All of the above limits hold uniformly in $\Gamma$, and even in a larger subarc of $\Delta$. Because of the uniformity in $z$ we may replace $ze^{i\pi /n}$ by $z$. So indeed (2.3) $\Rightarrow $ (2.4).

(d) $\Leftrightarrow $ (e). From (3.10) with $\alpha=-1/2$,

$$ \begin{equation*} 2g_{n}(z)=1-\frac{\varphi_{n}(ze^{\pi i/n})}{\varphi_{n}(z)}(1+o(1)) +o(1), \end{equation*} \notag $$
and so (2.4) $\Leftrightarrow $ (2.5).

(a) $\Leftrightarrow $ (f). Let $\Gamma_{1}$ be a proper subarc of $\Delta$ properly containing $\Gamma$. First assume that (2.1) holds. We apply Lemma 3.1, (c), for all $\zeta_{n}=z$, and must verify (3.3) there. The first condition in (3.3) for all $\zeta_{n}=z$ follows immediately from (2.4) — and in turn, we have proved that follows from (2.1). For the second, first observe from Lemma 3.4 and our hypothesis that

$$ \begin{equation*} \inf \{n(1-|z_{jn}|) \colon \tau_{jn}\in\Gamma \} \geqslant C. \end{equation*} \notag $$
Then Lemma 3.3, (a), shows that the second condition in (3.3) holds for all $\zeta_{n}=z$. From Lemma 3.1, (c), we obtain that every subsequence of positive integers contains a further subsequence $\mathcal{S}$ such that uniformly for $u$ in compact subsets of $\mathbb{C}$,
$$ \begin{equation*} \lim_{n\to \infty,\, n\in \mathcal{S}}\frac{\varphi_{n}(z(1+u/n))}{\varphi_{n}(z)}=e^{u}+C(e^{u}-1), \end{equation*} \notag $$
where
$$ \begin{equation*} C=\lim_{n\to \infty,\,n\in \mathcal{S}} \biggl(\frac{z}{n}\frac{\varphi_{n}'(z)}{\varphi_{n}(z)}-1\biggr). \end{equation*} \notag $$
But from (2.4) (which, as we know, follows from (a)) $C=0$, so the limit is independent of the subsequence, and we have (2.6).

Now conversely assume that we have the local limit (2.6). Then setting $u=i\pi /n$ and using the uniformity,

$$ \begin{equation*} \lim_{n\to \infty}\frac{\varphi_{n}(ze^{i\pi /n})}{\varphi_{n}(z)} =\lim_{n\to \infty}\frac{\varphi_{n}(z(1+\frac{i\pi}{n}[ 1+o(1) ]))}{\varphi_{n}(z)} =e^{i\pi}=-1, \end{equation*} \notag $$
so we have (2.5) and hence the required result from the established equivalence (a) $\Leftrightarrow $ (e).

(f) $\Rightarrow $ (g). This is a consequence of the fact that $e^{u}$ has no zeros. Indeed, if there were a subsequence of zeros $z_{jn}$, $n\in \mathcal{S}$, $j=j(n)$, with $\tau_{jn}\in \Gamma$ and $1-|z_{jn}|=O(1/n)$, then writing $z_{jn}=\tau_{jn}(1+i\alpha_{n}/n)$, we have $\alpha_{n}=O(1)$, and by the local limit,

$$ \begin{equation*} 0=\frac{\varphi_{n}(\tau_{jn}(1+i\alpha_{n}/n))}{\varphi_{n}(\tau_{jn})} =e^{\pi i\alpha_{n}}+o(1), \end{equation*} \notag $$
leading to a contradiction.

(g) $\Leftrightarrow $ (h). This is Lemma 3.3, (b).

(h) $\Rightarrow $ (f). Now,

$$ \begin{equation*} \frac{1}{n}g_{n}'(z) =\frac{1}{n^{2}}\frac{d}{dz} \biggl(\sum_{j=1}^{n}\biggl[ 1+\frac{z_{jn}}{z-z_{jn}}\biggr]\biggr) =-\frac{1}{n^{2}}\sum_{j=1}^{n}\frac{z_{jn}}{(z-z_{jn}) ^{2}}. \end{equation*} \notag $$
Let $A>0$. Our hypothesis gives uniformly for $z\in \Gamma$,
$$ \begin{equation*} \frac{1}{n}g_{n}'(z)=o(1) \end{equation*} \notag $$
and hence for $\zeta,z\in\Gamma$ with $|\zeta-z|\leqslant A/n$,
$$ \begin{equation} |g_{n}(z) -g_{n}(\zeta) |=o(1). \end{equation} \tag{4.3} $$
Next (3.10) for $\alpha=-1/2$ gives
$$ \begin{equation*} 2g_{n}(z)=1-\frac{\varphi_{n}(ze^{i\pi /n})}{\varphi_{n}(z)}(1+o(1)) +o(1). \end{equation*} \notag $$
Also, replacing $z$ by $ze^{i\pi /n}$ and using (3.10) for $\alpha=1/2$ gives
$$ \begin{equation*} 2g_{n}(ze^{i\pi /n})=1-\frac{\varphi_{n}(z)}{\varphi_{n}(ze^{i\pi /n})}(1+o(1)) +o(1). \end{equation*} \notag $$
Thus from (4.3),
$$ \begin{equation*} \biggl|\frac{\varphi_{n}(ze^{i\pi /n})}{\varphi_{n}(z)}(1+o(1)) -\frac{\varphi_{n}(z)}{\varphi_{n}(ze^{i\pi /n})}(1+o(1)) \biggr|=o(1), \end{equation*} \notag $$
so that
$$ \begin{equation*} \biggl(\frac{\varphi_{n}(ze^{i\pi /n})}{\varphi_{n}(z)}\biggr)^{2}=1+o(1). \end{equation*} \notag $$
In view of (3.7) for $\alpha=1/2$, necessarily
$$ \begin{equation*} \lim_{n\to \infty}\frac{\varphi_{n}(ze^{i\pi /n})}{\varphi_{n}(z)}=-1. \end{equation*} \notag $$
Then we have the conclusion (2.5), and the established equivalence (e) $\Leftrightarrow $ (f) gives the result. Note that all the limits above hold uniformly in $\Gamma$, so we have uniformity in (2.5).

Theorem 2.1 is proved.

§ 5. Proof of Theorem 2.2

We note that several of the equivalences hold automatically for finitely many $n$. So we should deal with large enough $n$.

(a) $\Leftrightarrow $ (b). This is immediate from (3.9) and the continuity of $\mu'$.

(b) $\Leftrightarrow $ (c). This is immediate from (3.6).

(c) $\Leftrightarrow $ (d). This follows from (3.10) with $\alpha=-1/2$, which implies that

$$ \begin{equation*} 2g_{n}(z) -1=-\frac{\varphi_{n}(ze^{\pm i\pi /n})}{\varphi_{n}(z)}(1+o(1)) +o(1). \end{equation*} \notag $$

(a) $\Rightarrow $ (e). This was proved in Lemma 3.4.

(e) $\Leftrightarrow $ (f). This was proved in Lemma 3.3, (a).

(f) $\Rightarrow $ (a). Assume the result is false. Then we can choose $\Gamma\subset\Delta$, a sequence $\mathcal{S}$ of positive integers, and for $n\in \mathcal{S}$ we can choose $\zeta_{n}\in \Gamma$ such that

$$ \begin{equation*} |\varphi_{n}(\zeta_{n}) |\to\infty. \end{equation*} \notag $$
Then from (3.9),
$$ \begin{equation*} \frac{1}{n}R_{n}(\zeta_{n}) \to 0. \end{equation*} \notag $$
Let $C>0$. Let $\{u_{n}\}$ be a sequence on the unit circle such that $|\zeta_{n}-u_{n}|\leqslant C/n$, $n\geqslant1$. We claim that
$$ \begin{equation} \frac{1}{n}R_{n}(u_{n}) \to 0. \end{equation} \tag{5.1} $$
Indeed, let $\Gamma_{1}$ contain $\Gamma$ as a proper subarc. If $z_{jn}\in \Gamma_{1}$, then using (2.13) (which we may because of the equivalence (e) $\Leftrightarrow $ (f))
$$ \begin{equation*} \biggl|\frac{u_{n}-z_{jn}}{\zeta_{n}-z_{jn}}\biggr|\leqslant 1+\frac{|u_{n}-\zeta_{n}|}{1-|z_{jn}|}\leqslant C \end{equation*} \notag $$
with a similar lower bound. The terms containing $z_{jn}\notin \Gamma_{1}$ are easier, so $R_{n}(\zeta_{n})\sim R_{n}(u_{n})$ and we have (5.1). Next, using the equivalence (e) $\Leftrightarrow$ (f),
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1}{|u_{n}-z_{jn}|^{2}} \leqslant \frac{C}{n}\sum_{\tau_{jn}\in \Gamma_{1}}\frac{1-|z_{jn}|^{2}}{|u_{n}-z_{jn}|^{2}} \leqslant\frac{C}{n}R_{n}(u_{n})=o(1), \end{equation*} \notag $$
while the tail sum admits the estimate
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{\tau_{jn}\notin \Gamma_{1}}\frac{1}{|u_{n}-z_{jn}|^{2}}\leqslant C\frac{n}{n^{2}}=o(1), \end{equation*} \notag $$
so
$$ \begin{equation*} \frac{1}{n^{2}}\sum_{j=1}^{n}\frac{1}{|u_{n}-z_{jn}|^{2}}=o(1). \end{equation*} \notag $$
We now proceed much as in the proof of (h) $\Rightarrow $ (f) in Theorem 2.1. We have
$$ \begin{equation*} \frac{1}{n}g_{n}'(u_{n})=-\frac{1}{n^{2}}\sum_{j=1}^{n}\frac{z_{jn}}{(u_{n}-z_{jn}) ^{2}}=o(1). \end{equation*} \notag $$
It follows that if $|u_{n}-\zeta_{n}|\leqslant C/n$, and $u_{n},\zeta_{n}\in\Gamma$, then
$$ \begin{equation*} |g_{n}(u_{n}) -g_{n}(\zeta_{n}) |=o(1). \end{equation*} \notag $$
Then from (3.10) for $\alpha=1/2$ and appropriate choices of $u_{n}$,
$$ \begin{equation*} \begin{aligned} \, &\biggl|\frac{\varphi_{n}(\zeta_{n}e^{i\pi /n})}{\varphi_{n}(\zeta_{n})}(1+o(1)) -\frac{\varphi_{n}(\zeta_{n})}{\varphi_{n}(\zeta_{n}e^{i\pi/n})}(1+o(1)) \biggr|=o(1) \\ &\qquad \Longrightarrow\quad \biggl(\frac{\varphi_{n}(\zeta_{n}e^{i\pi /n})}{\varphi_{n}(\zeta_{n})}\biggr) ^{2}=1+o(1) \\ &\qquad \Longrightarrow\quad\frac{\varphi_{n}(\zeta_{n}e^{i\pi /n})}{\varphi_{n}(\zeta_{n})}=-1+o(1) \end{aligned} \end{equation*} \notag $$
in view of (3.7) for $\alpha=1/2$. Next, using (3.10),
$$ \begin{equation*} g_{n}(\zeta_{n})=1+o(1), \end{equation*} \notag $$
which gives using (3.6) that
$$ \begin{equation*} \frac{1}{n}R_{n}(\zeta_{n})=1+o(1), \end{equation*} \notag $$
and hence using (3.9), that
$$ \begin{equation*} |\varphi_{n}(\zeta_{n}) |^{2}\mu'(\zeta_{n})=1+o(1). \end{equation*} \notag $$
This contradicts our assumption that $\{\varphi_{n}(\zeta_{n})\}$ is unbounded.

Theorem 2.2 is proved.


Bibliography

1. M. U. Ambroladze, “On the possible growth of orthogonal polynomials with continuous positive weight”, Mat. Zametki, 45:6 (1989), 99–101 (Russian)  mathnet  mathscinet  zmath
2. M. U. Ambroladze, “On the possible rate of growth of polynomials orthogonal with a continuous positive weight”, Mat. Sb., 182:3 (1991), 332–353  mathnet  mathscinet  zmath; English transl. in Sb. Math., 72:2 (1992), 311–331  crossref  adsnasa
3. A. I. Aptekarev, S. A. Denisov and D. N. Tulyakov, “V. A. Steklov's problem of estimating the growth of orthogonal polynomials”, Selected issues of mathematics and mechanics, Tr. Mat. Inst. Steklova, 289, MAIK “Nauka/Interperiodica”, Moscow, 2015, 83–106  mathnet  crossref  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 289 (2015), 72–95  crossref
4. A. Aptekarev, S. Denisov and D. Tulyakov, “On a problem by Steklov”, J. Amer. Math. Soc., 29:4 (2016), 1117–1165  crossref  mathscinet  zmath
5. V. M. Badkov, “The asymptotic behavior of orthogonal polynomials”, Mat. Sb. (N.S.), 109(151):1(5) (1979), 46–59  mathnet  mathscinet  zmath; English transl. in Sb. Math., 37:1 (1980), 39–51  crossref
6. R. Bessonov and S. Denisov, “Zero sets, entropy, and pointwise asymptotics of orthogonal polynomials”, J. Funct. Anal., 280:12 (2021), 109002, 38 pp.  crossref  mathscinet  zmath
7. J. Breuer and E. Seelig, “On the spacing of zeros of paraorthogonal polynomials for singular measures”, J. Approx. Theory, 259 (2020), 105482, 20 pp.  crossref  mathscinet  zmath
8. G. Freud, Orthogonal polynomials, Akad. Kiado, Budapest; Pergamon Press, Oxford, 1971, 294 pp.  crossref
9. Ya. L. Geronimus, Polynomials, orthogonal on a circumference and on an interval. Estimates, asymptotic formulas, orthogonal series, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958, 240 pp.  mathscinet  zmath; English transl., Ya. L. Geronimus, Polynomials orthogonal on a circle and interval, Internat. Ser. Monogr. Pure Appl. Math., 18, Pergamon Press, New York–Oxford–London–Paris, 1960, ix+210 pp.  mathscinet  zmath
10. E. Levin and D. S. Lubinsky, “Universality limits involving orthogonal polynomials on the unit circle”, Comput. Methods Funct. Theory, 7:2 (2007), 543–561  crossref  mathscinet  zmath
11. E. Levin and D. S. Lubinsky, “Bounds on orthogonal polynomials and separation of their zeros”, J. Spectr. Theory, 12:2 (2022), 497–513  crossref  zmath
12. D. S. Lubinsky, “A new approach to universality limits involving orthogonal polynomials”, Ann. of Math. (2), 170:2 (2009), 915–939  crossref  mathscinet  zmath
13. D. S. Lubinsky, “Local asymptotics for orthonormal polynomials on the unit circle via universality”, J. Anal. Math., 141:1 (2020), 285–304  crossref  mathscinet  zmath
14. D. S. Lubinsky, “Correction to ‘Local asymptotics for orthonormal polynomials on the unit circle via universality’ ”, J. Anal. Math., 144:1 (2021), 397–400  crossref  mathscinet  zmath
15. H. N. Mhaskar and E. B. Saff, “On the distribution of zeros of polynomials orthogonal on the unit circle”, J. Approx. Theory, 63:1 (1990), 30–38  crossref  mathscinet  zmath
16. P. G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc., 18, no. 213, Amer. Math. Soc., Providence, RI, 1979, v+185 pp.  crossref  mathscinet  zmath
17. P. Nevai and V. Totik, “Orthogonal polynomials and their zeros”, Acta Sci. Math. (Szeged), 53:1–2 (1989), 99–104  mathscinet  zmath
18. E. A. Rahmanov (Rakhmanov), “On Steklov's conjecture in the theory of orthogonal polynomials”, Mat. Sb. (N.S.), 108(150):4 (1979), 581–608  mathnet  mathscinet  zmath; English transl. in Sb. Math., 36:4 (1980), 549–575  crossref
19. E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szegő's condition”, Mat. Sb. (N.S.), 130(172):2(6) (1986), 151–169  mathnet  mathscinet  zmath; English transl. in Sb. Math., 58:1 (1987), 149–167  crossref
20. E. A. Rakhmanov, “Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero”, Mat. Sb. (N.S.), 114(156):2 (1981), 269–298  mathnet  mathscinet; English transl. in Sb. Math., 42:2 (1982), 237–263  crossref  zmath
21. B. Simanek, “Zeros of non-Baxter paraorthogonal polynomials on the unit circle”, Constr. Approx., 35:1 (2012), 107–121  crossref  mathscinet  zmath
22. B. Simanek, “Zero spacings of paraorthogonal polynomials on the unit circle”, J. Approx. Theory, 256 (2020), 105437, 9 pp.  crossref  mathscinet  zmath
23. B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp.  mathscinet  zmath; Part 2. Spectral theory, Amer. Math. Soc. Colloq. Publ., 54, Part 2, i–xxii and 467–1044 pp.  crossref  mathscinet  zmath
24. B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp.  mathscinet  zmath
25. H. Stahl and V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp.  crossref  mathscinet  zmath
26. G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp.  mathscinet  zmath
27. V. Totik, “Universality under Szegő's condition”, Canad. Math. Bull., 59:1 (2016), 211–224  crossref  mathscinet  zmath

Citation: D. S. Lubinsky, “On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle”, Sb. Math., 213:11 (2022), 1512–1529
Citation in format AMSBIB
\Bibitem{Lub22}
\by D.~S.~Lubinsky
\paper On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
\jour Sb. Math.
\yr 2022
\vol 213
\issue 11
\pages 1512--1529
\mathnet{http://mi.mathnet.ru//eng/sm9569}
\crossref{https://doi.org/10.4213/sm9569e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582604}
\zmath{https://zbmath.org/?q=an:1539.42032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213.1512L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992276000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165910479}
Linking options:
  • https://www.mathnet.ru/eng/sm9569
  • https://doi.org/10.4213/sm9569e
  • https://www.mathnet.ru/eng/sm/v213/i11/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025