|
Orthogonality in nonseparable rearrangement-invariant spaces
S. V. Astashkina, E. M. Semenovb a Samara National Research University, Samara, Russia
b Voronezh State University, Voronezh, Russia
Abstract:
Let $E$ be a nonseparable rearrangement-invariant space and let $E_0$ be the closure of the space of bounded functions in $E$. Elements of $E$ orthogonal to $E_0$, that is, elements $x\in E$, $x\ne 0$, such that $\|x\|_{E} \le\|x+y\|_{E}$ for each $y\in E_0$, are investigated. The set of orthogonal elements $\mathcal{O}(E)$ is characterized in the case when $E$ is a Marcinkiewicz or an Orlicz space. If an Orlicz space $L_M$ is considered with the Luxemburg norm, then the set $L_M\setminus (L_M)_0$ is the algebraic sum of $\mathcal{O}(L_M)$ and $(L_M)_0$. Each nonseparable rearrangement-invariant space $E$ such that $\mathcal{O}(E)\ne\varnothing$ is shown to contain an asymptotically isometric copy of the space $l_\infty$.
Bibliography: 17 titles.
Keywords:
rearrangement-invariant space, nonseparable Banach space, Orlicz space, Marcinkiewicz space, orthogonal element.
Received: 01.01.2021 and 02.07.2021
Citation:
S. V. Astashkin, E. M. Semenov, “Orthogonality in nonseparable rearrangement-invariant spaces”, Sb. Math., 212:11 (2021), 1553–1570
Linking options:
https://www.mathnet.ru/eng/sm9543https://doi.org/10.1070/SM9543 https://www.mathnet.ru/eng/sm/v212/i11/p55
|
Statistics & downloads: |
Abstract page: | 246 | Russian version PDF: | 33 | English version PDF: | 27 | Russian version HTML: | 91 | References: | 34 | First page: | 12 |
|