Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 11, Pages 1553–1570
DOI: https://doi.org/10.1070/SM9543
(Mi sm9543)
 

Orthogonality in nonseparable rearrangement-invariant spaces

S. V. Astashkina, E. M. Semenovb

a Samara National Research University, Samara, Russia
b Voronezh State University, Voronezh, Russia
References:
Abstract: Let $E$ be a nonseparable rearrangement-invariant space and let $E_0$ be the closure of the space of bounded functions in $E$. Elements of $E$ orthogonal to $E_0$, that is, elements $x\in E$, $x\ne 0$, such that $\|x\|_{E} \le\|x+y\|_{E}$ for each $y\in E_0$, are investigated. The set of orthogonal elements $\mathcal{O}(E)$ is characterized in the case when $E$ is a Marcinkiewicz or an Orlicz space. If an Orlicz space $L_M$ is considered with the Luxemburg norm, then the set $L_M\setminus (L_M)_0$ is the algebraic sum of $\mathcal{O}(L_M)$ and $(L_M)_0$. Each nonseparable rearrangement-invariant space $E$ such that $\mathcal{O}(E)\ne\varnothing$ is shown to contain an asymptotically isometric copy of the space $l_\infty$.
Bibliography: 17 titles.
Keywords: rearrangement-invariant space, nonseparable Banach space, Orlicz space, Marcinkiewicz space, orthogonal element.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1393
Russian Foundation for Basic Research 18-01-00414-а
S. V. Astashkin's research was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the Programme for the Support of the Development of the Scientific and Educational Mathematical Center of the Volga Federal District (agreement no. 075-02-2021-1393). The research of E. M. Semenov was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-01-00414-a).
Received: 01.01.2021 and 02.07.2021
Bibliographic databases:
Document Type: Article
UDC: 517.982.27
MSC: 46B26, 46E30
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, E. M. Semenov, “Orthogonality in nonseparable rearrangement-invariant spaces”, Sb. Math., 212:11 (2021), 1553–1570
Citation in format AMSBIB
\Bibitem{AstSem21}
\by S.~V.~Astashkin, E.~M.~Semenov
\paper Orthogonality in nonseparable rearrangement-invariant spaces
\jour Sb. Math.
\yr 2021
\vol 212
\issue 11
\pages 1553--1570
\mathnet{http://mi.mathnet.ru//eng/sm9543}
\crossref{https://doi.org/10.1070/SM9543}
\zmath{https://zbmath.org/?q=an:1493.46044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1553A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745283600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124216401}
Linking options:
  • https://www.mathnet.ru/eng/sm9543
  • https://doi.org/10.1070/SM9543
  • https://www.mathnet.ru/eng/sm/v212/i11/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:246
    Russian version PDF:33
    English version PDF:27
    Russian version HTML:91
    References:34
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024