Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 2, Pages 173–215
DOI: https://doi.org/10.1070/SM9535
(Mi sm9535)
 

This article is cited in 6 scientific papers (total in 6 papers)

A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus

S. D. Glyzin, A. Yu. Kolesov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
References:
Abstract: On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained.
Bibliography: 15 titles.
Keywords: map, hyperbolicity, infinite-dimensional torus, Anosov diffeomorphism.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1397
Russian Science Foundation 21-71-30011
The research presented in §§ 1 and 2 was carried out in the framework of the Development Programme of the Regional Scientific and Educational Center (at Yaroslavl State University), with the support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2021-1397). The research presented in § 3 was carried out with the support of the Russian Science Foundation under grant no. 21-71-30011.
Received: 30.11.2020 and 26.10.2021
Bibliographic databases:
Document Type: Article
UDC: 517.926+517.938
MSC: Primary 37D20, 46T20; Secondary 37E30, 58B20
Language: English
Original paper language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, “A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus”, Sb. Math., 213:2 (2022), 173–215
Citation in format AMSBIB
\Bibitem{GlyKol22}
\by S.~D.~Glyzin, A.~Yu.~Kolesov
\paper A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus
\jour Sb. Math.
\yr 2022
\vol 213
\issue 2
\pages 173--215
\mathnet{http://mi.mathnet.ru//eng/sm9535}
\crossref{https://doi.org/10.1070/SM9535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461427}
\zmath{https://zbmath.org/?q=an:1510.37048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..173G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000782495800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129011569}
Linking options:
  • https://www.mathnet.ru/eng/sm9535
  • https://doi.org/10.1070/SM9535
  • https://www.mathnet.ru/eng/sm/v213/i2/p50
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:306
    Russian version PDF:50
    English version PDF:35
    Russian version HTML:153
    References:66
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024