Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 9, Pages 1193–1207
DOI: https://doi.org/10.1070/SM9501
(Mi sm9501)
 

This article is cited in 1 scientific paper (total in 1 paper)

Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras

K. S. Vorushilov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: In this paper, we construct complete sets of polynomials in bi-involution on nilpotent Lie algebras of dimension 7 in the list due to Gong. Thus we verify the generalized Mishchenko-Fomenko conjecture for all algebras in this list.
Bibliography: 14 titles.
Keywords: Lie algebras, integrable Hamiltonian systems, complete commutative sets of polynomials, argument shift method.
Funding agency Grant number
Russian Foundation for Basic Research 19-31-90151
This research was funded by the Russian Foundation for Basic Research (grant no. 19-31-90151).
Received: 01.09.2020 and 15.02.2021
Bibliographic databases:
Document Type: Article
UDC: 514.745.8
MSC: Primary 30C65, 30L10, 58C06; Secondary 31C12, 31C15, 31B15, 30D45
Language: English
Original paper language: Russian
Citation: K. S. Vorushilov, “Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras”, Sb. Math., 212:9 (2021), 1193–1207
Citation in format AMSBIB
\Bibitem{Vor21}
\by K.~S.~Vorushilov
\paper Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
\jour Sb. Math.
\yr 2021
\vol 212
\issue 9
\pages 1193--1207
\mathnet{http://mi.mathnet.ru//eng/sm9501}
\crossref{https://doi.org/10.1070/SM9501}
\zmath{https://zbmath.org/?q=an:1512.17019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1193V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000718595800001}
\elib{https://elibrary.ru/item.asp?id=47538462}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120812509}
Linking options:
  • https://www.mathnet.ru/eng/sm9501
  • https://doi.org/10.1070/SM9501
  • https://www.mathnet.ru/eng/sm/v212/i9/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024