Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 10, Pages 1491–1502
DOI: https://doi.org/10.1070/SM9482
(Mi sm9482)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems

A. S. Tselishchev

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Rubio de Francia proved a one-sided Littlewood-Paley inequality for the square function constructed from an arbitrary system of disjoint intervals. Later, Osipov proved a similar inequality for Walsh systems. We prove a similar inequality for more general Vilenkin systems.
Bibliography: 11 titles.
Keywords: Littlewood-Paley-Rubio de Francia inequality, Vilenkin systems.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
This research was carried out with the financial support of the “BASIS” foundation for the advancement of theoretical physics and mathematics and a grant in the form of subsidies from the federal budget to the implementation of state support for the creation and development of world-class scientific centres, including international mathematical centres and world-class scientific centres that do research and development in areas that are scientific and technological development priorities (agreement no. 075-15-2019-1620 of 8 November, 2019 between the Ministry of Education and Science of the Russian Federation and the St Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences).
Received: 23.07.2020 and 24.01.2021
Bibliographic databases:
Document Type: Article
UDC: 517.986.62
MSC: Primary 42C10, 43A75; Secondary 42B25
Language: English
Original paper language: Russian
Citation: A. S. Tselishchev, “A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems”, Sb. Math., 212:10 (2021), 1491–1502
Citation in format AMSBIB
\Bibitem{Tse21}
\by A.~S.~Tselishchev
\paper A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems
\jour Sb. Math.
\yr 2021
\vol 212
\issue 10
\pages 1491--1502
\mathnet{http://mi.mathnet.ru//eng/sm9482}
\crossref{https://doi.org/10.1070/SM9482}
\zmath{https://zbmath.org/?q=an:1484.42028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000729972900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123523100}
Linking options:
  • https://www.mathnet.ru/eng/sm9482
  • https://doi.org/10.1070/SM9482
  • https://www.mathnet.ru/eng/sm/v212/i10/p152
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:288
    Russian version PDF:36
    English version PDF:28
    Russian version HTML:68
    References:35
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024