Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 3, Pages 385–411
DOI: https://doi.org/10.1070/SM9475
(Mi sm9475)
 

This article is cited in 3 scientific papers (total in 3 papers)

Optimal recovery in weighted spaces with homogeneous weights

K. Yu. Osipenkoabc

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
c Moscow Aviation Institute (National Research University), Moscow, Russia
References:
Abstract: The paper concerns problems of the recovery of operators from noisy information in weighted $L_q$-spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the $L_p$-metric.
Bibliography: 30 titles.
Keywords: optimal recovery, linear operator, Fourier transform, Carlson's inequality.
Received: 28.06.2020 and 12.12.2021
Bibliographic databases:
Document Type: Article
MSC: 41A65, 41A46, 49N30
Language: English
Original paper language: Russian
Citation: K. Yu. Osipenko, “Optimal recovery in weighted spaces with homogeneous weights”, Sb. Math., 213:3 (2022), 385–411
Citation in format AMSBIB
\Bibitem{Osi22}
\by K.~Yu.~Osipenko
\paper Optimal recovery in weighted spaces with homogeneous weights
\jour Sb. Math.
\yr 2022
\vol 213
\issue 3
\pages 385--411
\mathnet{http://mi.mathnet.ru//eng/sm9475}
\crossref{https://doi.org/10.1070/SM9475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461436}
\zmath{https://zbmath.org/?q=an:1505.41020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..385O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000794979600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132359577}
Linking options:
  • https://www.mathnet.ru/eng/sm9475
  • https://doi.org/10.1070/SM9475
  • https://www.mathnet.ru/eng/sm/v213/i3/p111
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:286
    Russian version PDF:36
    English version PDF:22
    Russian version HTML:130
    References:55
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024