Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 8, Pages 1122–1179
DOI: https://doi.org/10.1070/SM9468
(Mi sm9468)
 

This article is cited in 14 scientific papers (total in 14 papers)

Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems

V. V. Vedyushkina, I. S. Kharcheva

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We consider a generalization of a mathematical billiard bounded by arcs of confocal quadrics, known as billiard books. Billiard books define a large class of integrable Hamiltonian systems. In this connection the question arises of the possibility of realizing integrable Hamiltonian systems with two degrees of freedom by billiard books. The authors have proved previously that for any nondegenerate three-dimensional bifurcation (33-atom) a billiard book in which such a bifurcation appears can be constructed algorithmically. Based on the preceding result, we give a proof of the fact that given any base of a Liouville foliation (rough molecule), a billiard book can be constructed algorithmically such that the base of the Liouville foliation of this system is isomorphic to the one given initially.
Bibliography: 15 titles.
Keywords: mathematical billiard, Hamiltonian system, Liouville equivalence, Fomenko-Zieschang invariant.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00775-а
Foundation for the Advancement of Theoretical Physics and Mathematics BASIS 19-8-2-5-1
The research of I. S. Kharcheva was supported by the Russian Foundation for Basic Research (grant no. 19-01-00775-a) and by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (grant no. 19-8-2-5-1).
Received: 24.06.2020
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35; Secondary 37G10, 37J20
Language: English
Original paper language: Russian
Citation: V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179
Citation in format AMSBIB
\Bibitem{VedKha21}
\by V.~V.~Vedyushkina, I.~S.~Kharcheva
\paper Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems
\jour Sb. Math.
\yr 2021
\vol 212
\issue 8
\pages 1122--1179
\mathnet{http://mi.mathnet.ru/eng/sm9468}
\crossref{https://doi.org/10.1070/SM9468}
\zmath{https://zbmath.org/?q=an:1485.37056}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1122V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000707459100001}
\elib{https://elibrary.ru/item.asp?id=47523466}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118882427}
Linking options:
  • https://www.mathnet.ru/eng/sm9468
  • https://doi.org/10.1070/SM9468
  • https://www.mathnet.ru/eng/sm/v212/i8/p89
  • This publication is cited in the following 14 articles:
    1. Anatoly Fomenko, “Hidden symmetries in Hamiltonian geometry, topology, physics and mechanics”, Priroda, 2025, no. 1(1313), 23  crossref
    2. K. E. Turina, “Topological invariants of some ordered billiard games”, Moscow University Mathematics Bulletin, 79:3 (2024), 122–129  mathnet  crossref  crossref  elib
    3. D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Moscow University Mathematics Bulletin, 79:3 (2024), 130–141  mathnet  crossref  crossref  elib
    4. V. A. Kibkalo, D. A. Tuniyants, “Uporyadochennye billiardnye igry i topologicheskie svoistva billiardnykh knizhek”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 610–625  mathnet  crossref
    5. V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, 78:5 (2023), 207–215  mathnet  crossref  crossref  elib
    8. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. A. T. Fomenko, V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, Eur. J. Math., 8:4 (2022), 1392–1423  crossref  mathscinet  zmath
    11. V. V. Vedyushkina, V. A. Kibkalo, “Billiardnye knizhki maloi slozhnosti i realizatsiya sloenii Liuvillya integriruemykh sistem”, Chebyshevskii sb., 23:1 (2022), 53–82  mathnet  crossref
    12. A. T. Fomenko, V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332  crossref  mathscinet  zmath  isi
    13. V. Kibkalo, A. Fomenko, I. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64  crossref  mathscinet
    14. V. V. Vedyushkina, V. A. Kibkalo, S. E. Pustovoitov, “Realizatsiya fokusnykh osobennostei integriruemykh sistem billiardnymi knizhkami s potentsialom Guka”, Chebyshevskii sb., 22:5 (2021), 44–57  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:512
    Russian version PDF:89
    English version PDF:50
    Russian version HTML:265
    References:45
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025