Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 10, Pages 1415–1435
DOI: https://doi.org/10.1070/SM9444
(Mi sm9444)
 

This article is cited in 2 scientific papers (total in 2 papers)

The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator

A. G. Eliseev

National Research University "Moscow Power Engineering Institute", Moscow, Russia
References:
Abstract: An asymptotic solution of the linear Cauchy problem in the presence of a ‘weak’ turning point of the limit operator is built using Lomov's regularization method. The major singularities of the problem are written out in an explicit form. Estimates are given with respect to $\varepsilon$, which characterise the behaviour of the singularities as $\varepsilon\to 0$. The asymptotic convergence of the regularized series is proved. The results of the work are illustrated by an example.
Bibliography: 8 titles.
Keywords: singular Cauchy problem, asymptotic series, regularization method, turning point.
Received: 11.05.2020 and 07.10.2020
Bibliographic databases:
Document Type: Article
UDC: 517.928.2
MSC: 34E20
Language: English
Original paper language: Russian
Citation: A. G. Eliseev, “The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator”, Sb. Math., 212:10 (2021), 1415–1435
Citation in format AMSBIB
\Bibitem{Eli21}
\by A.~G.~Eliseev
\paper The regularized asymptotics of a~solution of the Cauchy problem in the presence of a~weak turning point of the limit operator
\jour Sb. Math.
\yr 2021
\vol 212
\issue 10
\pages 1415--1435
\mathnet{http://mi.mathnet.ru//eng/sm9444}
\crossref{https://doi.org/10.1070/SM9444}
\zmath{https://zbmath.org/?q=an:1493.34164}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000729984300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123551973}
Linking options:
  • https://www.mathnet.ru/eng/sm9444
  • https://doi.org/10.1070/SM9444
  • https://www.mathnet.ru/eng/sm/v212/i10/p76
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:207
    Russian version PDF:34
    English version PDF:11
    Russian version HTML:76
    References:35
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024