|
This article is cited in 1 scientific paper (total in 1 paper)
Uniform $\mathrm{K}$-stability modulo a subgroup
Y. Lia, G. Tianbc, X. Zhubc a School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, P.R. China
b Beijing International Center for Mathematical Research, Peking University, Beijing, P.R. China
c School of Mathematical Sciences, Peking University, Beijing, P.R. China
Abstract:
In this paper, we prove a version of uniform $\mathrm{K}$-stability for a pair $(v,w)$ with respect to a reductive Lie group $\mathbf G$ modulo a subgroup $\mathbf G_0$ of $\mathbf G$.
Bibliography: 7 titles.
Keywords:
uniform $\mathrm{K}$-stability, weights, polytopes.
Received: 23.04.2020 and 08.08.2020
Citation:
Y. Li, G. Tian, X. Zhu, “Uniform $\mathrm{K}$-stability modulo a subgroup”, Sb. Math., 212:3 (2021), 332–350
Linking options:
https://www.mathnet.ru/eng/sm9430https://doi.org/10.1070/SM9430 https://www.mathnet.ru/eng/sm/v212/i3/p68
|
Statistics & downloads: |
Abstract page: | 590 | Russian version PDF: | 89 | English version PDF: | 35 | Russian version HTML: | 99 | References: | 62 | First page: | 24 |
|