Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 12, Pages 1704–1736
DOI: https://doi.org/10.1070/SM9422
(Mi sm9422)
 

This article is cited in 3 scientific papers (total in 3 papers)

On Weyl multipliers of the rearranged trigonometric system

G. A. Karagulyanab

a Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Republic of Armenia
b Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia
References:
Abstract: We prove that the condition $\sum_{n=1}^\infty1/(nw(n))<\infty$ is necessary for an increasing sequence of numbers $w(n)$ to be an almost everywhere unconditional convergence Weyl multiplier for the trigonometric system. This property was known long ago for Haar, Walsh, Franklin and some other classical orthogonal systems. The proof of this result is based on a new sharp logarithmic lower bound on $L^2$ for the majorant operator related to the rearranged trigonometric system.
Bibliography: 32 titles.
Keywords: trigonometric series, Weyl multiplier, Menshov-Rademacher theorem.
Received: 02.04.2020 and 22.09.2020
Bibliographic databases:
Document Type: Article
UDC: 517.587+517.578
MSC: 42C05, 42C10, 42C20
Language: English
Original paper language: Russian
Citation: G. A. Karagulyan, “On Weyl multipliers of the rearranged trigonometric system”, Sb. Math., 211:12 (2020), 1704–1736
Citation in format AMSBIB
\Bibitem{Kar20}
\by G.~A.~Karagulyan
\paper On Weyl multipliers of the rearranged trigonometric system
\jour Sb. Math.
\yr 2020
\vol 211
\issue 12
\pages 1704--1736
\mathnet{http://mi.mathnet.ru//eng/sm9422}
\crossref{https://doi.org/10.1070/SM9422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181076}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1704K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000617467000001}
\elib{https://elibrary.ru/item.asp?id=46751635}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101178981}
Linking options:
  • https://www.mathnet.ru/eng/sm9422
  • https://doi.org/10.1070/SM9422
  • https://www.mathnet.ru/eng/sm/v211/i12/p49
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:373
    Russian version PDF:57
    English version PDF:15
    References:52
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024