Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 2, Pages 211–233
DOI: https://doi.org/10.1070/SM9418
(Mi sm9418)
 

This article is cited in 10 scientific papers (total in 10 papers)

Topological analysis of a billiard bounded by confocal quadrics in a potential field

S. E. Pustovoitov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: Consider a billiard in a plane domain bounded by confocal ellipses and hyperbolae. A Hooke potential acts on a point mass. This dynamical systems turns out to be completely Liouville integrable. A topological analysis of the Liouville foliation of isoenergy manifolds at all possible levels of the Hamiltonian is performed and the complete Fomenko-Zieschang invariants (marked molecules) of these manifolds are constructed.
Bibliography: 15 titles.
Keywords: Hooke potential, integrable system, Fomenko-Zieschang invariant, Liouville equivalence.
Funding agency Grant number
Russian Science Foundation 17-11-01303
This work was supported by the Russian Science Foundation under grant no. 17-11-01303.
Received: 28.03.2020
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: 37C83, 37J35
Language: English
Original paper language: Russian
Citation: S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233
Citation in format AMSBIB
\Bibitem{Pus21}
\by S.~E.~Pustovoitov
\paper Topological analysis of a~billiard bounded by confocal quadrics in a~potential field
\jour Sb. Math.
\yr 2021
\vol 212
\issue 2
\pages 211--233
\mathnet{http://mi.mathnet.ru//eng/sm9418}
\crossref{https://doi.org/10.1070/SM9418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223963}
\zmath{https://zbmath.org/?q=an:1468.37028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..211P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701455800001}
\elib{https://elibrary.ru/item.asp?id=46036139}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105114739}
Linking options:
  • https://www.mathnet.ru/eng/sm9418
  • https://doi.org/10.1070/SM9418
  • https://www.mathnet.ru/eng/sm/v212/i2/p81
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:470
    Russian version PDF:59
    English version PDF:23
    Russian version HTML:256
    References:26
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024