Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 2, Pages 185–210
DOI: https://doi.org/10.1070/SM9412
(Mi sm9412)
 

This article is cited in 1 scientific paper (total in 1 paper)

Polyhomomorphisms of locally compact groups

Yu. A. Neretinabcd

a Faculty of Mathematics, University of Vienna, Vienna, Austria
b Institute for Theoretical and Experimental Physics named by A. I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow
c Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: Let $G$ and $H$ be locally compact groups with fixed two-sided invariant Haar measures. A polyhomomorphism $G\rightarrowtail H$ is a closed subgroup $R\subset G\times H$ with fixed Haar measure, whose marginals on $G$ and $H$ are dominated by the Haar measures on $G$ and $H$. A polyhomomorphism can be regarded as a multi-valued map sending points to sets equipped with ‘uniform’ measures. For two polyhomomorphisms $G\rightarrowtail H$ and $H\rightarrowtail K$ there is a well-defined product $G\rightarrowtail K$. The set of polyhomomorphisms $G\rightarrowtail H$ is a metrizable compact space with respect to the Chabauty-Bourbaki topology and the product is separately continuous. A polyhomomorphism $G\rightarrowtail H$ determines a canonical operator $L^2(H)\to L^2(G)$, which is a partial isometry up to a scalar factor. For example, we consider locally compact linear spaces over finite fields and examine the closures of groups of linear operators in semigroups of polyhomomorphisms.
Bibliography: 40 titles.
Keywords: polymorphism, multiplicative relation, Haar measure, partial isometries, Chabauty-Bourbaki topology.
Funding agency Grant number
Austrian Science Fund P31591
This research was supported by the Austrian Science Fund – FWF (grant no. P31591).
Received: 20.03.2020 and 25.10.2020
Bibliographic databases:
Document Type: Article
UDC: 512.546.3+512.546.4+517.986.6
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Polyhomomorphisms of locally compact groups”, Sb. Math., 212:2 (2021), 185–210
Citation in format AMSBIB
\Bibitem{Ner21}
\by Yu.~A.~Neretin
\paper Polyhomomorphisms of locally compact groups
\jour Sb. Math.
\yr 2021
\vol 212
\issue 2
\pages 185--210
\mathnet{http://mi.mathnet.ru//eng/sm9412}
\crossref{https://doi.org/10.1070/SM9412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223962}
\zmath{https://zbmath.org/?q=an:1490.43003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..185N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701439000001}
\elib{https://elibrary.ru/item.asp?id=46034752}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105079745}
Linking options:
  • https://www.mathnet.ru/eng/sm9412
  • https://doi.org/10.1070/SM9412
  • https://www.mathnet.ru/eng/sm/v212/i2/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:336
    Russian version PDF:43
    English version PDF:20
    Russian version HTML:117
    References:34
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024