Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 9, Pages 1279–1303
DOI: https://doi.org/10.1070/SM9410
(Mi sm9410)
 

This article is cited in 11 scientific papers (total in 11 papers)

A Viskovatov algorithm for Hermite-Padé polynomials

N. R. Ikonomova, S. P. Suetinb

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We propose and justify an algorithm for producing Hermite-Padé polynomials of type I for an arbitrary tuple of $m+1$ formal power series $[f_0,\dots,f_m]$, $m\geqslant1$, about the point $z=0$ ($f_j\in\mathbb{C}[[z]]$) under the assumption that the series have a certain (‘general position’) nondegeneracy property. This algorithm is a straightforward extension of the classical Viskovatov algorithm for constructing Padé polynomials (for $m=1$ our algorithm coincides with the Viskovatov algorithm).
The algorithm is based on a recurrence relation and has the following feature: all the Hermite-Padé polynomials corresponding to the multi-indices $(k,k,k,\dots,k,k)$, $(k+1,k,k,\dots,k,k)$, $(k+1,k+1,k,\dots,k,k)$, $\dots$, $(k+1,k+1,k+1,\dots,k+1,k)$ are already known at the point when the algorithm produces the Hermite-Padé polynomials corresponding to the multi-index $(k+1,k+1,k+1,\dots,k+1,k+1)$.
We show how the Hermite-Padé polynomials corresponding to different multi-indices can be found recursively via this algorithm by changing the initial conditions appropriately.
At every step $n$, the algorithm can be parallelized in $m+1$ independent evaluations.
Bibliography: 30 titles.
Keywords: formal power series, Hermite-Padé polynomials, Viskovatov algorithm.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1614
The research of S. P. Suetin was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1614).
Received: 17.03.2020 and 01.06.2021
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 9, Pages 94–118
DOI: https://doi.org/10.4213/sm9410
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 41A21
Language: English
Original paper language: Russian
Citation: N. R. Ikonomov, S. P. Suetin, “A Viskovatov algorithm for Hermite-Padé polynomials”, Mat. Sb., 212:9 (2021), 94–118; Sb. Math., 212:9 (2021), 1279–1303
Citation in format AMSBIB
\Bibitem{IkoSue21}
\by N.~R.~Ikonomov, S.~P.~Suetin
\paper A Viskovatov algorithm for Hermite-Pad\'e polynomials
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 9
\pages 94--118
\mathnet{http://mi.mathnet.ru/sm9410}
\crossref{https://doi.org/10.4213/sm9410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4324077}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1279I}
\elib{https://elibrary.ru/item.asp?id=47541572}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 9
\pages 1279--1303
\crossref{https://doi.org/10.1070/SM9410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000718597400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120789343}
Linking options:
  • https://www.mathnet.ru/eng/sm9410
  • https://doi.org/10.1070/SM9410
  • https://www.mathnet.ru/eng/sm/v212/i9/p94
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:455
    Russian version PDF:41
    English version PDF:21
    Russian version HTML:102
    References:35
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024