|
This article is cited in 1 scientific paper (total in 1 paper)
Multivariate Haar systems in Besov function spaces
P. Oswald Institute for Numerical Simulation, University of Bonn, Bonn, Germany
Abstract:
We determine all cases for which the $d$-dimensional Haar wavelet system $H^d$ on the unit cube $I^d$ is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces ${B}_{p,q,1}^s(I^d)$, $0<p,q<\infty$, $0\le s < 1/p$, defined in terms of first-order $L_p$-moduli of smoothness. We obtain similar results for the tensor-product Haar system $\widetilde{H}^d$, and characterize the parameter range for which the dual of ${B}_{p,q,1}^s(I^d)$ is trivial for $0<p<1$.
Bibliography: 31 titles.
Keywords:
Haar system, Besov spaces, Schauder bases in quasi-Banach spaces, unconditional convergence, piecewise-constant approximation.
Received: 28.02.2020 and 13.02.2021
Citation:
P. Oswald, “Multivariate Haar systems in Besov function spaces”, Sb. Math., 212:6 (2021), 810–842
Linking options:
https://www.mathnet.ru/eng/sm9398https://doi.org/10.1070/SM9398 https://www.mathnet.ru/eng/sm/v212/i6/p73
|
|