Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 6, Pages 810–842
DOI: https://doi.org/10.1070/SM9398
(Mi sm9398)
 

This article is cited in 1 scientific paper (total in 1 paper)

Multivariate Haar systems in Besov function spaces

P. Oswald

Institute for Numerical Simulation, University of Bonn, Bonn, Germany
References:
Abstract: We determine all cases for which the $d$-dimensional Haar wavelet system $H^d$ on the unit cube $I^d$ is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces ${B}_{p,q,1}^s(I^d)$, $0<p,q<\infty$, $0\le s < 1/p$, defined in terms of first-order $L_p$-moduli of smoothness. We obtain similar results for the tensor-product Haar system $\widetilde{H}^d$, and characterize the parameter range for which the dual of ${B}_{p,q,1}^s(I^d)$ is trivial for $0<p<1$.
Bibliography: 31 titles.
Keywords: Haar system, Besov spaces, Schauder bases in quasi-Banach spaces, unconditional convergence, piecewise-constant approximation.
Funding agency Grant number
Hausdorff Center for Mathematics, University of Bonn
Deutsche Forschungsgemeinschaft
This research was initiated during a year-long stay by the author at the Institute for Numerical Simulation (INS), sponsored by the Hausdorff Center for Mathematics (HCM) at the University of Bonn and financed by the Deutsche Forschungsgemeinschaft (DFG).
Received: 28.02.2020 and 13.02.2021
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 6, Pages 73–108
DOI: https://doi.org/10.4213/sm9398
Bibliographic databases:
Document Type: Article
UDC: 517.518.34+517.982.254
MSC: Primary 42C40, 46E35; Secondary 41A15, 41A63
Language: English
Original paper language: Russian
Citation: P. Oswald, “Multivariate Haar systems in Besov function spaces”, Mat. Sb., 212:6 (2021), 73–108; Sb. Math., 212:6 (2021), 810–842
Citation in format AMSBIB
\Bibitem{Osw21}
\by P.~Oswald
\paper Multivariate Haar systems in Besov function spaces
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 6
\pages 73--108
\mathnet{http://mi.mathnet.ru/sm9398}
\crossref{https://doi.org/10.4213/sm9398}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..810O}
\elib{https://elibrary.ru/item.asp?id=47071331}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 6
\pages 810--842
\crossref{https://doi.org/10.1070/SM9398}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000686622300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116006330}
Linking options:
  • https://www.mathnet.ru/eng/sm9398
  • https://doi.org/10.1070/SM9398
  • https://www.mathnet.ru/eng/sm/v212/i6/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:325
    Russian version PDF:74
    English version PDF:25
    Russian version HTML:112
    References:41
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024