Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 12, Pages 1660–1703
DOI: https://doi.org/10.1070/SM9366
(Mi sm9366)
 

This article is cited in 4 scientific papers (total in 4 papers)

Necessary and sufficient conditions for extending a function to a Schur function

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: A criterion for a function given by its values (with multiplicities) at a sequence of points in the disc $\mathbb D=\{|z|<1\}$ to extend to a holomorphic function in $\mathbb D$ with modulus at most $1$ is stated and proved. In the case when the function is defined by the values of its derivatives at $z=0$, this coincides with Schur's well-known criterion.
Bibliography: 16 titles.
Keywords: continued fractions, Schur functions, Hankel determinants.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1614
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1614).
Received: 23.12.2019 and 28.09.2020
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 30E05, 30H05; Secondary 30B70
Language: English
Original paper language: Russian
Citation: V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703
Citation in format AMSBIB
\Bibitem{Bus20}
\by V.~I.~Buslaev
\paper Necessary and sufficient conditions for~extending a~function to a~Schur function
\jour Sb. Math.
\yr 2020
\vol 211
\issue 12
\pages 1660--1703
\mathnet{http://mi.mathnet.ru//eng/sm9366}
\crossref{https://doi.org/10.1070/SM9366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181075}
\zmath{https://zbmath.org/?q=an:1461.30084}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1660B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000617465800001}
\elib{https://elibrary.ru/item.asp?id=46744476}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101058084}
Linking options:
  • https://www.mathnet.ru/eng/sm9366
  • https://doi.org/10.1070/SM9366
  • https://www.mathnet.ru/eng/sm/v211/i12/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:354
    Russian version PDF:37
    English version PDF:14
    References:41
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024