Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 2, Pages 265–271
DOI: https://doi.org/10.1070/SM9360
(Mi sm9360)
 

This article is cited in 2 scientific papers (total in 2 papers)

Maximal Lie subalgebras among locally nilpotent derivations

A. A. Skutin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: We study maximal Lie subalgebras among locally nilpotent derivations of the polynomial algebra. Freudenburg conjectured that the triangular Lie algebra of locally nilpotent derivations of the polynomial algebra is a maximal Lie algebra contained in the set of locally nilpotent derivations, and that every maximal Lie algebra contained in the set of locally nilpotent derivations is conjugate to the triangular Lie algebra. In this paper we prove the first part of the conjecture and present a counterexample to the second part. We also show that under a certain natural condition imposed on a maximal Lie algebra there is a conjugation taking this Lie algebra to the triangular Lie algebra.
Bibliography: 2 titles.
Keywords: polynomial algebra, Lie algebra, locally nilpotent derivation.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00591-а
This research was supported by the Russian Foundation for Basic Research (grant no. 19-01-00591-a).
Received: 07.12.2019 and 15.10.2020
Bibliographic databases:
Document Type: Article
UDC: 512.714+512.554.35
MSC: Primary 13N15; Secondary 17B30
Language: English
Original paper language: Russian
Citation: A. A. Skutin, “Maximal Lie subalgebras among locally nilpotent derivations”, Sb. Math., 212:2 (2021), 265–271
Citation in format AMSBIB
\Bibitem{Sku21}
\by A.~A.~Skutin
\paper Maximal Lie subalgebras among locally nilpotent derivations
\jour Sb. Math.
\yr 2021
\vol 212
\issue 2
\pages 265--271
\mathnet{http://mi.mathnet.ru//eng/sm9360}
\crossref{https://doi.org/10.1070/SM9360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223965}
\zmath{https://zbmath.org/?q=an:1462.13025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..265S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701443200001}
\elib{https://elibrary.ru/item.asp?id=46074998}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105113234}
Linking options:
  • https://www.mathnet.ru/eng/sm9360
  • https://doi.org/10.1070/SM9360
  • https://www.mathnet.ru/eng/sm/v212/i2/p138
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:352
    Russian version PDF:62
    English version PDF:28
    Russian version HTML:106
    References:42
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024