Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 11, Pages 1503–1538
DOI: https://doi.org/10.1070/SM9351
(Mi sm9351)
 

This article is cited in 6 scientific papers (total in 6 papers)

Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space

G. V. Belozerov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We consider geodesic billiards on quadrics in $\mathbb{R}^3$. We consider the motion of a point mass inside a billiard table, that is, inside a domain lying on a quadric bounded by finitely many quadrics confocal with the given one and having angles at corner points of the boundary equal to ${\pi}/{2}$. According to the well-known Jacobi-Chasles theorem this problem turns out to be integrable. We introduce an equivalence relation on the set of billiard tables and prove a theorem on their classification. We present a complete classification of geodesic billiards on quadrics in $\mathbb{R}^3$ up to Liouville equivalence.
Bibliography: 19 titles.
Keywords: integrable system, geodesic billiard, Liouville equivalence, Fomenko-Zieschang invariant.
Received: 18.11.2019
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35; Secondary 37G10, 70E40
Language: English
Original paper language: Russian
Citation: G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Sb. Math., 211:11 (2020), 1503–1538
Citation in format AMSBIB
\Bibitem{Bel20}
\by G.~V.~Belozerov
\paper Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space
\jour Sb. Math.
\yr 2020
\vol 211
\issue 11
\pages 1503--1538
\mathnet{http://mi.mathnet.ru//eng/sm9351}
\crossref{https://doi.org/10.1070/SM9351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169728}
\zmath{https://zbmath.org/?q=an:1460.37058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1503B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000612716600001}
\elib{https://elibrary.ru/item.asp?id=44955119}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100432921}
Linking options:
  • https://www.mathnet.ru/eng/sm9351
  • https://doi.org/10.1070/SM9351
  • https://www.mathnet.ru/eng/sm/v211/i11/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024