Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 11, Pages 1568–1591
DOI: https://doi.org/10.1070/SM9348
(Mi sm9348)
 

Limits, standard complexes and $\mathbf{fr}$-codes

S. O. Ivanova, R. V. Mikhailovab, F. Yu. Pavutnitskiya

a Laboratory of Modern Algebra and Applications, Saint Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: For a strongly connected category $\mathscr{C}$ with pairwise coproducts, we introduce a cosimplicial object, which serves as a sort of resolution for computing higher derived functors of $\lim \colon \mathrm{Ab}^{\mathscr{C}}\to \mathrm{Ab}$. Applications involve the Künneth theorem for higher limits and $\lim$-finiteness of $\mathbf{fr}$-codes. A dictionary for the $\mathbf{fr}$-codes with words of length $\leq 3$ is given.
Bibliography: 19 titles.
Keywords: higher limits, cosimplicial resolutions, cohomological finiteness.
Funding agency Grant number
Russian Science Foundation 16-11-10073
Ministry of Education and Science of the Russian Federation 14.W03.31.0030
The main results of this work (Theorem 2 and the results in § 5) were obtained with the support of the Russian Science Foundation under grant no. 16-11-10073. This research was also supported by a grant for State Support of Scientific Research Conducted under the Auspices of Leading Scientists of the Government of the Russian Federation (project no. 14.W03.31.0030).
Received: 11.11.2019 and 05.05.2020
Bibliographic databases:
Document Type: Article
UDC: 512.664
MSC: Primary 18A30; Secondary 18G10, 20J05
Language: English
Original paper language: Russian
Citation: S. O. Ivanov, R. V. Mikhailov, F. Yu. Pavutnitskiy, “Limits, standard complexes and $\mathbf{fr}$-codes”, Sb. Math., 211:11 (2020), 1568–1591
Citation in format AMSBIB
\Bibitem{IvaMikPav20}
\by S.~O.~Ivanov, R.~V.~Mikhailov, F.~Yu.~Pavutnitskiy
\paper Limits, standard complexes and $\mathbf{fr}$-codes
\jour Sb. Math.
\yr 2020
\vol 211
\issue 11
\pages 1568--1591
\mathnet{http://mi.mathnet.ru//eng/sm9348}
\crossref{https://doi.org/10.1070/SM9348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169731}
\zmath{https://zbmath.org/?q=an:1456.18002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1568I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610558200001}
\elib{https://elibrary.ru/item.asp?id=44958863}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100381796}
Linking options:
  • https://www.mathnet.ru/eng/sm9348
  • https://doi.org/10.1070/SM9348
  • https://www.mathnet.ru/eng/sm/v211/i11/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:858
    Russian version PDF:310
    English version PDF:38
    References:54
    First page:118
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024