Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 10, Pages 1447–1459
DOI: https://doi.org/10.1070/SM9342
(Mi sm9342)
 

Topologically projective, injective and flat modules of harmonic analysis

N. T. Nemesh

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We study homologically trivial modules of harmonic analysis on a locally compact group $G$. For $L_1(G)$- and $M(G)$-modules $C_0(G)$, $L_p(G)$ and $M(G)$ we give criteria for metric and topological projectivity, injectivity and flatness. In most cases, modules with these properties must be finite-dimensional.
Bibliography: 18 titles.
Keywords: Banach module, projectivity, injectivity, flatness, harmonic analysis.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00447-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 19-01-00447-a).
Received: 31.10.2019 and 29.12.2019
Bibliographic databases:
Document Type: Article
UDC: 517.968.22
MSC: Primary 46M10; Secondary 28A05, 54G05
Language: English
Original paper language: Russian
Citation: N. T. Nemesh, “Topologically projective, injective and flat modules of harmonic analysis”, Sb. Math., 211:10 (2020), 1447–1459
Citation in format AMSBIB
\Bibitem{Nem20}
\by N.~T.~Nemesh
\paper Topologically projective, injective and flat modules of harmonic analysis
\jour Sb. Math.
\yr 2020
\vol 211
\issue 10
\pages 1447--1459
\mathnet{http://mi.mathnet.ru//eng/sm9342}
\crossref{https://doi.org/10.1070/SM9342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153719}
\zmath{https://zbmath.org/?q=an:1469.46074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1447N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000601269400001}
\elib{https://elibrary.ru/item.asp?id=45007080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099373869}
Linking options:
  • https://www.mathnet.ru/eng/sm9342
  • https://doi.org/10.1070/SM9342
  • https://www.mathnet.ru/eng/sm/v211/i10/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024