Loading [MathJax]/jax/output/SVG/config.js
Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 83, Issue 1, Pages 237–281
DOI: https://doi.org/10.1070/SM1995v083n01ABEH003589
(Mi sm934)
 

This article is cited in 8 scientific papers (total in 8 papers)

The spectral shift function, the characteristic function of a contraction, and a generalized integral

A. V. Rybkin
References:
Abstract: Let $T$ be a contraction that is a trace class perturbation of a unitary operator $V$, and let $\{\lambda_k\}$ be the discrete spectrum of $T$. For a sufficiently large class of functions $\Phi$ the trace formula
$$ \operatorname{tr}\{\Phi(T)-\Phi (V)\}=\sum_k\{\Phi(\lambda_k)-\Phi(\lambda_k/|\lambda_k|)\}+(B)\int_0^{2\pi}\Phi'(e^{i\varphi})\,d\Omega(\varphi), $$
holds. This formula is a direct analogue of the well-known M. G. Krein trace formula for unitary operators. It is natural to call the function $\Omega$ the spectral shift distribution. Generally speaking, it is not of bounded variation; however, the integral in the trace formula exists in the wider $B$-sense. In the present paper an explicit representation is obtained for $\Omega$ in terms of the characteristic function $\Theta(\lambda)$ of the contraction $T$, and also a relation between a certain derivative $\Omega'$ and the scattering matrix $S(\varphi)$ of the pair $(T,V)$:
$$ \det S(\varphi)=\exp\{-2\pi i\overline{\Omega'(\varphi)}\,\} \quad \textrm{a.e.\ with respect to Lebesgue measure} $$
is established. A necessary and sufficient condition that $\Omega$ have bounded variation is obtained. In particular, the necessary and sufficient condition requires that the singular spectrum of the contraction $T$ be empty. The main results are complete.
Received: 03.09.1993
Bibliographic databases:
UDC: 517
MSC: Primary 47A45, 47A60; Secondary 47A40
Language: English
Original paper language: Russian
Citation: A. V. Rybkin, “The spectral shift function, the characteristic function of a contraction, and a generalized integral”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 237–281
Citation in format AMSBIB
\Bibitem{Ryb94}
\by A.~V.~Rybkin
\paper The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 1
\pages 237--281
\mathnet{http://mi.mathnet.ru/eng/sm934}
\crossref{https://doi.org/10.1070/SM1995v083n01ABEH003589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1309184}
\zmath{https://zbmath.org/?q=an:0852.47004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ10000012}
Linking options:
  • https://www.mathnet.ru/eng/sm934
  • https://doi.org/10.1070/SM1995v083n01ABEH003589
  • https://www.mathnet.ru/eng/sm/v185/i10/p91
  • This publication is cited in the following 8 articles:
    1. V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1 (2024), 1–52  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203  mathnet  crossref  crossref  isi  elib
    3. Anna Skripka, Operator Theory: Advances and Applications, 240, Operator Theory in Harmonic and Non-commutative Analysis, 2014, 243  crossref
    4. Potapov D. Sukochev F., “Koplienko Spectral Shift Function on the Unit Circle”, Commun. Math. Phys., 309:3 (2012), 693–702  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. F. Gesztesy, A. Pushnitski, B. Simon, “On the Koplienko spectral shift function. I. Basics”, Zhurn. matem. fiz., anal., geom., 4:1 (2008), 63–107  mathnet  mathscinet  zmath  elib
    6. S. A. M. Marcantognini, M. D. Morán, “Koplienko–Neidhardt trace formula for pairs of contraction operators and pairs of maximal dissipative operators”, Math Nachr, 279:7 (2006), 784  crossref  mathscinet  zmath  isi
    7. V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. Alexei Rybkin, “On a trace formula of the Buslaev–Faddeev type for a long-range potential”, J Math Phys (N Y ), 40:3 (1999), 1334  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:610
    Russian version PDF:175
    English version PDF:50
    References:95
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025