Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 83, Issue 1, Pages 237–281
DOI: https://doi.org/10.1070/SM1995v083n01ABEH003589
(Mi sm934)
 

This article is cited in 8 scientific papers (total in 8 papers)

The spectral shift function, the characteristic function of a contraction, and a generalized integral

A. V. Rybkin
References:
Abstract: Let $T$ be a contraction that is a trace class perturbation of a unitary operator $V$, and let $\{\lambda_k\}$ be the discrete spectrum of $T$. For a sufficiently large class of functions $\Phi$ the trace formula
$$ \operatorname{tr}\{\Phi(T)-\Phi (V)\}=\sum_k\{\Phi(\lambda_k)-\Phi(\lambda_k/|\lambda_k|)\}+(B)\int_0^{2\pi}\Phi'(e^{i\varphi})\,d\Omega(\varphi), $$
holds. This formula is a direct analogue of the well-known M. G. Krein trace formula for unitary operators. It is natural to call the function $\Omega$ the spectral shift distribution. Generally speaking, it is not of bounded variation; however, the integral in the trace formula exists in the wider $B$-sense. In the present paper an explicit representation is obtained for $\Omega$ in terms of the characteristic function $\Theta(\lambda)$ of the contraction $T$, and also a relation between a certain derivative $\Omega'$ and the scattering matrix $S(\varphi)$ of the pair $(T,V)$:
$$ \det S(\varphi)=\exp\{-2\pi i\overline{\Omega'(\varphi)}\,\} \quad \textrm{a.e.\ with respect to Lebesgue measure} $$
is established. A necessary and sufficient condition that $\Omega$ have bounded variation is obtained. In particular, the necessary and sufficient condition requires that the singular spectrum of the contraction $T$ be empty. The main results are complete.
Received: 03.09.1993
Russian version:
Matematicheskii Sbornik, 1994, Volume 185, Number 10, Pages 91–144
Bibliographic databases:
UDC: 517
MSC: Primary 47A45, 47A60; Secondary 47A40
Language: English
Original paper language: Russian
Citation: A. V. Rybkin, “The spectral shift function, the characteristic function of a contraction, and a generalized integral”, Mat. Sb., 185:10 (1994), 91–144; Russian Acad. Sci. Sb. Math., 83:1 (1995), 237–281
Citation in format AMSBIB
\Bibitem{Ryb94}
\by A.~V.~Rybkin
\paper The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral
\jour Mat. Sb.
\yr 1994
\vol 185
\issue 10
\pages 91--144
\mathnet{http://mi.mathnet.ru/sm934}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1309184}
\zmath{https://zbmath.org/?q=an:0852.47004}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 1
\pages 237--281
\crossref{https://doi.org/10.1070/SM1995v083n01ABEH003589}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ10000012}
Linking options:
  • https://www.mathnet.ru/eng/sm934
  • https://doi.org/10.1070/SM1995v083n01ABEH003589
  • https://www.mathnet.ru/eng/sm/v185/i10/p91
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:552
    Russian version PDF:167
    English version PDF:38
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024