Abstract:
Let $T$ be a contraction that is a trace class perturbation of a unitary operator $V$, and let
$\{\lambda_k\}$ be the discrete spectrum of $T$. For a sufficiently large class of functions $\Phi$ the trace formula
$$
\operatorname{tr}\{\Phi(T)-\Phi (V)\}=\sum_k\{\Phi(\lambda_k)-\Phi(\lambda_k/|\lambda_k|)\}+(B)\int_0^{2\pi}\Phi'(e^{i\varphi})\,d\Omega(\varphi),
$$
holds. This formula is a direct analogue of the well-known M. G. Krein trace formula for unitary operators. It is natural to call the function $\Omega$ the spectral shift distribution. Generally speaking, it is not of bounded variation; however, the integral in the trace formula exists in the wider $B$-sense. In the present paper an explicit representation is obtained
for $\Omega$ in terms of the characteristic function $\Theta(\lambda)$ of
the contraction $T$, and also a relation between a certain derivative $\Omega'$ and the scattering matrix $S(\varphi)$ of the pair $(T,V)$:
$$
\det S(\varphi)=\exp\{-2\pi i\overline{\Omega'(\varphi)}\,\} \quad \textrm{a.e.\ with respect to Lebesgue measure}
$$
is established. A necessary and sufficient condition that $\Omega$ have bounded variation is obtained. In particular, the necessary and sufficient condition requires that the singular spectrum of the contraction $T$ be empty. The main results are complete.
Citation:
A. V. Rybkin, “The spectral shift function, the characteristic function of a contraction, and a generalized integral”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 237–281
\Bibitem{Ryb94}
\by A.~V.~Rybkin
\paper The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 1
\pages 237--281
\mathnet{http://mi.mathnet.ru/eng/sm934}
\crossref{https://doi.org/10.1070/SM1995v083n01ABEH003589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1309184}
\zmath{https://zbmath.org/?q=an:0852.47004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ10000012}
Linking options:
https://www.mathnet.ru/eng/sm934
https://doi.org/10.1070/SM1995v083n01ABEH003589
https://www.mathnet.ru/eng/sm/v185/i10/p91
This publication is cited in the following 8 articles:
V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1 (2024), 1–52
M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203
Anna Skripka, Operator Theory: Advances and Applications, 240, Operator Theory in Harmonic and Non-commutative Analysis, 2014, 243
Potapov D. Sukochev F., “Koplienko Spectral Shift Function on the Unit Circle”, Commun. Math. Phys., 309:3 (2012), 693–702
F. Gesztesy, A. Pushnitski, B. Simon, “On the Koplienko spectral shift function. I. Basics”, Zhurn. matem. fiz., anal., geom., 4:1 (2008), 63–107
S. A. M. Marcantognini, M. D. Morán, “Koplienko–Neidhardt trace formula for pairs of contraction operators and pairs of maximal dissipative operators”, Math Nachr, 279:7 (2006), 784
V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953
Alexei Rybkin, “On a trace formula of the Buslaev–Faddeev type for a long-range potential”, J Math Phys (N Y ), 40:3 (1999), 1334