Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 7, Pages 1001–1039
DOI: https://doi.org/10.1070/SM9331
(Mi sm9331)
 

Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications

R. Pietkun

Toruń, Poland
References:
Abstract: Given a linear closed but not necessarily densely defined operator $A$ on a Banach space $E$ with nonempty resolvent set and a multivalued map $F\colon I\times E\multimap E$ with weakly sequentially closed graph, we consider the integro-differential inclusion
$$ \dot{u}\in Au+F\biggl(t,\int u\biggr)\quad\text{on } I,\qquad u(0)=x_0. $$
We focus on the case when $A$ generates an integrated semigroup and obtain existence of integrated solutions if $E$ is weakly compactly generated and $F$ satisfies
$$ \beta(F(t,\Omega))\leqslant \eta(t)\beta(\Omega) \quad\text{for all bounded } \Omega\subset E, $$
where $\eta\in L^1(I)$ and $\beta$ denotes the De Blasi measure of noncompactness. When $E$ is separable, we are able to show that the set of all integrated solutions is a compact $R_\delta$-subset of the space $C(I,E)$ endowed with the weak topology. We use this result to investigate a nonlocal Cauchy problem described by means of a nonconvex-valued boundary condition operator. We also include some applications to partial differential equations with multivalued terms are.
Bibliography: 26 titles.
Keywords: convergence theorem, De Blasi measure of noncompactness, integrated semigroup, integrated solution, $R_\delta$-set, semilinear integro-differential inclusion.
Received: 26.09.2019 and 20.03.2021
Bibliographic databases:
Document Type: Article
UDC: 517.911+517.968.7+517.983.23
Language: English
Original paper language: Russian
Citation: R. Pietkun, “Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications”, Sb. Math., 212:7 (2021), 1001–1039
Citation in format AMSBIB
\Bibitem{Pie21}
\by R.~Pietkun
\paper Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
\jour Sb. Math.
\yr 2021
\vol 212
\issue 7
\pages 1001--1039
\mathnet{http://mi.mathnet.ru//eng/sm9331}
\crossref{https://doi.org/10.1070/SM9331}
\zmath{https://zbmath.org/?q=an:1482.34181}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1001P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000696521200001}
\elib{https://elibrary.ru/item.asp?id=47660665}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116869971}
Linking options:
  • https://www.mathnet.ru/eng/sm9331
  • https://doi.org/10.1070/SM9331
  • https://www.mathnet.ru/eng/sm/v212/i7/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024