|
Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter
A. M. Kytmanova, A. Sadullaevb a Siberian Federal University, Krasnoyarsk, Russia
b National University of Uzbekistan, Tashkent, Uzbekistan
Abstract:
Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $\{z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)}\,dx $$ as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function.
Bibliography: 9 titles.
Keywords:
Weierstrass's preparation theorem, analytic set, regular point, volume of an analytic set, Wirtinger's theorem.
Received: 17.09.2019 and 22.07.2020
Citation:
A. M. Kytmanov, A. Sadullaev, “Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter”, Sb. Math., 212:11 (2021), 1608–1614
Linking options:
https://www.mathnet.ru/eng/sm9328https://doi.org/10.1070/SM9328 https://www.mathnet.ru/eng/sm/v212/i11/p109
|
|