Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 11, Pages 1608–1614
DOI: https://doi.org/10.1070/SM9328
(Mi sm9328)
 

Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter

A. M. Kytmanova, A. Sadullaevb

a Siberian Federal University, Krasnoyarsk, Russia
b National University of Uzbekistan, Tashkent, Uzbekistan
References:
Abstract: Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $\{z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form
$$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)}\,dx $$
as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function.
Bibliography: 9 titles.
Keywords: Weierstrass's preparation theorem, analytic set, regular point, volume of an analytic set, Wirtinger's theorem.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-41011-Узб_т
Ministry of Innovative Development of the Republic of Uzbekistan MRU-OT-9/2017
The research of A. M. Kytmanov was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-51-41011-Узб_т). The research of A. Sadullaev was carried out with the support of the Ministry of Innovative Development of the Republic of Uzbekistan (grant no. MRU-OT-9/2017).
Received: 17.09.2019 and 22.07.2020
Bibliographic databases:
Document Type: Article
UDC: 517.553
MSC: 32A60
Language: English
Original paper language: Russian
Citation: A. M. Kytmanov, A. Sadullaev, “Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter”, Sb. Math., 212:11 (2021), 1608–1614
Citation in format AMSBIB
\Bibitem{KytSad21}
\by A.~M.~Kytmanov, A.~Sadullaev
\paper Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter
\jour Sb. Math.
\yr 2021
\vol 212
\issue 11
\pages 1608--1614
\mathnet{http://mi.mathnet.ru//eng/sm9328}
\crossref{https://doi.org/10.1070/SM9328}
\zmath{https://zbmath.org/?q=an:1487.32032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1608K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745284800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124231025}
Linking options:
  • https://www.mathnet.ru/eng/sm9328
  • https://doi.org/10.1070/SM9328
  • https://www.mathnet.ru/eng/sm/v212/i11/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024