Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 8, Pages 1080–1126
DOI: https://doi.org/10.1070/SM9323
(Mi sm9323)
 

This article is cited in 5 scientific papers (total in 5 papers)

Waveguide with double threshold resonance at a simple threshold

S. A. Nazarov

Faculty of Mathematics and Mechanics, Saint Petersburg State University
References:
Abstract: A threshold resonance generated by an almost standing wave occurring at a threshold — a solution of the problem that do not decay at infinity, but rather stabilizes there — brings about various anomalies in the diffraction pattern at near-threshold frequencies. Examples when a simple threshold resonance occurs or does not occur are trivial. For the first time an acoustic waveguide (the Neumann spectral problem for the Laplace operator) of a special shape is constructed in which there is a maximum possible number (namely two) of linearly independent almost standing waves at a threshold (equal to a simple eigenvalue of the model problem on the cross-section of the cylindrical outlets to infinity). Effects in the scattering problem for acoustic waves, which are caused by these standing waves are discussed.
Bibliography: 54 titles.
Keywords: acoustic waveguide, double threshold resonance, almost standing waves, asymptotic analysis, near-threshold anomalies, weighted spaces with detached asymptotics.
Funding agency Grant number
Russian Science Foundation 17-11-01003
This research was supported by the Russian Science Foundation under grant no. 17-11-01003.
Received: 26.08.2019
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.328
MSC: Primary 35J05, 35J25, 35P05; Secondary 35P25
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Waveguide with double threshold resonance at a simple threshold”, Sb. Math., 211:8 (2020), 1080–1126
Citation in format AMSBIB
\Bibitem{Naz20}
\by S.~A.~Nazarov
\paper Waveguide with double threshold~resonance at a~simple threshold
\jour Sb. Math.
\yr 2020
\vol 211
\issue 8
\pages 1080--1126
\mathnet{http://mi.mathnet.ru/eng/sm9323}
\crossref{https://doi.org/10.1070/SM9323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153723}
\zmath{https://zbmath.org/?q=an:1454.35063}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1080N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586530900001}
\elib{https://elibrary.ru/item.asp?id=45208934}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095115724}
Linking options:
  • https://www.mathnet.ru/eng/sm9323
  • https://doi.org/10.1070/SM9323
  • https://www.mathnet.ru/eng/sm/v211/i8/p20
  • This publication is cited in the following 5 articles:
    1. S. A. Nazarov, “Gaps in the Spectrum of Thin Waveguides with Periodically Locally Deformed Walls”, Comput. Math. and Math. Phys., 64:1 (2024), 99  crossref  mathscinet
    2. S. A. Nazarov, “Lakuny v spektre tonkikh volnovodov s periodicheski raspolozhennymi lokalnymi deformatsiyami stenok”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:1 (2024)  crossref
    3. S. A. Nazarov, K. M. Ruotsalainen, P. J. Uusitalo, “Scattering Coefficients and Threshold Resonances in a Waveguide with Uniform Inflation of the Resonator”, J Math Sci, 283:4 (2024), 617  crossref
    4. S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    5. S. A. Nazarov, K. M. Ruotsalainen, P. I. Uusitalo, “Koeffitsienty rasseyaniya i porogovye rezonansy v volnovode pri ravnomernom rastyazhenii rezonatora”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 175–209  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:388
    Russian version PDF:46
    English version PDF:45
    References:73
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025