Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 9, Pages 1208–1227
DOI: https://doi.org/10.1070/SM9294
(Mi sm9294)
 

This article is cited in 1 scientific paper (total in 1 paper)

An eigenfunction manifold generated by a family of periodic boundary value problems

Ya. M. Dymarskiia, A. A. Bondar'b

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
b Specialized Educational and Scientific Center, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia
References:
Abstract: An analytic and topological description is given of the manifold of periodic eigenfunctions generated by the space of one-dimensional stationary Schrödinger equations with periodic real potentials. Connections with results due to Neuman, Ince and Uhlenbeck are discussed.
Bibliography: 11 titles.
Keywords: space of periodic boundary-value problems, fibration of the eigenfunction manifold.
Received: 23.06.2019 and 13.04.2021
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 9, Pages 18–39
DOI: https://doi.org/10.4213/sm9294
Bibliographic databases:
Document Type: Article
UDC: 517.927.25+517.988.2
MSC: 34L05, 34L10
Language: English
Original paper language: Russian
Citation: Ya. M. Dymarskii, A. A. Bondar', “An eigenfunction manifold generated by a family of periodic boundary value problems”, Mat. Sb., 212:9 (2021), 18–39; Sb. Math., 212:9 (2021), 1208–1227
Citation in format AMSBIB
\Bibitem{DymBon21}
\by Ya.~M.~Dymarskii, A.~A.~Bondar'
\paper An eigenfunction manifold generated by a~family of periodic boundary value problems
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 9
\pages 18--39
\mathnet{http://mi.mathnet.ru/sm9294}
\crossref{https://doi.org/10.4213/sm9294}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1208D}
\elib{https://elibrary.ru/item.asp?id=47540687}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 9
\pages 1208--1227
\crossref{https://doi.org/10.1070/SM9294}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000718599700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120801860}
Linking options:
  • https://www.mathnet.ru/eng/sm9294
  • https://doi.org/10.1070/SM9294
  • https://www.mathnet.ru/eng/sm/v212/i9/p18
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:285
    Russian version PDF:46
    English version PDF:40
    Russian version HTML:104
    References:43
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024