Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 1, Pages 29–54
DOI: https://doi.org/10.1070/SM9291
(Mi sm9291)
 

This article is cited in 6 scientific papers (total in 6 papers)

First integrals and asymptotic trajectories

V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We discuss the relationship between the singular points of an autonomous system of differential equations and the critical points of its first integrals. Applying the well-known Splitting Lemma, we introduce local coordinates in which the first integral takes a “canonical” form. These coordinates make it possible to introduce a quasihomogeneous structure in some neighbourhood of any singular point and so to prove general theorems on the existence of asymptotic trajectories which go into or out of that singular point. We consider quasihomogeneous truncations of the original system of differential equations and show that if the singular point is isolated, the quasihomogeneous system is Hamiltonian. For a general mechanical system with two degrees of freedom, we prove a theorem on the instability of an equilibrium when it is neither a local minimum nor a local maximum of the potential energy.
Bibliography: 21 titles.
Keywords: splitting lemma, quasihomogeneous system, asymptotic trajectory, Hamiltonian system, gyroscopic stabilization.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This research was funded by a grant from the Russian Science Foundation (project no. 19-71-30012).
Received: 10.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.925.51+517.93
MSC: Primary 34D05, 58K05; Secondary 58K05
Language: English
Original paper language: Russian
Citation: V. V. Kozlov, “First integrals and asymptotic trajectories”, Sb. Math., 211:1 (2020), 29–54
Citation in format AMSBIB
\Bibitem{Koz20}
\by V.~V.~Kozlov
\paper First integrals and asymptotic trajectories
\jour Sb. Math.
\yr 2020
\vol 211
\issue 1
\pages 29--54
\mathnet{http://mi.mathnet.ru//eng/sm9291}
\crossref{https://doi.org/10.1070/SM9291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045697}
\zmath{https://zbmath.org/?q=an:1444.34053}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211...29K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000522111300001}
\elib{https://elibrary.ru/item.asp?id=45498441}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087456204}
Linking options:
  • https://www.mathnet.ru/eng/sm9291
  • https://doi.org/10.1070/SM9291
  • https://www.mathnet.ru/eng/sm/v211/i1/p32
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024