Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 2, Pages 275–290
DOI: https://doi.org/10.1070/SM9236
(Mi sm9236)
 

This article is cited in 1 scientific paper (total in 1 paper)

Symmetries in left-invariant optimal control problems

A. V. Podobryaev

Ailamazyan Program Systems Institute of Russian Academy of Sciences, Ves'kovo, Pereslavl' district, Yaroslavl' oblast', Russia
References:
Abstract: Left-invariant optimal control problems on Lie groups are considered. When studying the optimality of extreme trajectories, the crucial role is played by symmetries of the exponential map that are induced by symmetries of the conjugate subsystem of the Hamiltonian system of the Pontryagin maximum principle. A general construction is obtained for these symmetries of the exponential map for connected Lie groups with generic coadjoint orbits of codimension not exceeding one and with a connected stabilizer.
Bibliography: 32 titles.
Keywords: symmetry, geometric control theory, Riemannian geometry, sub-Riemannian geometry.
Funding agency Grant number
Russian Science Foundation 17-11-01387
This research was carried out in the Ailamazyan Program Systems Institute of the Russian Academy of Sciences and was supported by the Russian Science Foundation under grant no. 17-11-01387.
Received: 17.02.2019 and 27.08.2019
Bibliographic databases:
Document Type: Article
UDC: 517.977+514.765
MSC: Primary 49J21; Secondary 22E30, 53C17, 53D20
Language: English
Original paper language: Russian
Citation: A. V. Podobryaev, “Symmetries in left-invariant optimal control problems”, Sb. Math., 211:2 (2020), 275–290
Citation in format AMSBIB
\Bibitem{Pod20}
\by A.~V.~Podobryaev
\paper Symmetries in left-invariant optimal control problems
\jour Sb. Math.
\yr 2020
\vol 211
\issue 2
\pages 275--290
\mathnet{http://mi.mathnet.ru//eng/sm9236}
\crossref{https://doi.org/10.1070/SM9236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070047}
\zmath{https://zbmath.org/?q=an:1443.49011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..275P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529472700001}
\elib{https://elibrary.ru/item.asp?id=43294003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085606686}
Linking options:
  • https://www.mathnet.ru/eng/sm9236
  • https://doi.org/10.1070/SM9236
  • https://www.mathnet.ru/eng/sm/v211/i2/p125
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:359
    Russian version PDF:37
    English version PDF:24
    References:35
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024