Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 3, Pages 455–465
DOI: https://doi.org/10.1070/SM9227
(Mi sm9227)
 

This article is cited in 1 scientific paper (total in 1 paper)

A connected compact locally Chebyshev set in a finite-dimensional space is a Chebyshev set

K. S. Shklyaev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Let $X$ be a Banach space. A set $M\subset X$ is a Chebyshev set if, for each $x\in X$, there exists a unique best approximation to $x$ in $M$. A set $M$ is locally Chebyshev if, for any point $x\in M$, there exists a Chebyshev set $F_x\subset M$ such that some neighbourhood of $x$ in $M$ lies in $F_x$. It is shown that each connected compact locally Chebyshev set in a finite-dimensional normed space is a Chebyshev set.
Bibliography: 11 titles.
Keywords: Chebyshev set, metric projection, Chebyshev layer, covering, homotopy.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00333-а
Foundation for the Advancement of Theoretical Physics and Mathematics BASIS
Ministry of Education and Science of the Russian Federation НШ-6222.2018.1
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 18-01-00333-a), the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”, and the Programme for State Support of Leading Scientific Schools of the President of the Russian Federation (project no. НШ-6222.2018.1).
Received: 03.02.2019 and 22.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
MSC: 46B20
Language: English
Original paper language: Russian
Citation: K. S. Shklyaev, “A connected compact locally Chebyshev set in a finite-dimensional space is a Chebyshev set”, Sb. Math., 211:3 (2020), 455–465
Citation in format AMSBIB
\Bibitem{Shk20}
\by K.~S.~Shklyaev
\paper A~connected compact locally Chebyshev set in a~finite-dimensional space is a~Chebyshev set
\jour Sb. Math.
\yr 2020
\vol 211
\issue 3
\pages 455--465
\mathnet{http://mi.mathnet.ru//eng/sm9227}
\crossref{https://doi.org/10.1070/SM9227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070053}
\zmath{https://zbmath.org/?q=an:1471.41015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..455S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536262600001}
\elib{https://elibrary.ru/item.asp?id=45455278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087443181}
Linking options:
  • https://www.mathnet.ru/eng/sm9227
  • https://doi.org/10.1070/SM9227
  • https://www.mathnet.ru/eng/sm/v211/i3/p158
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:441
    Russian version PDF:51
    English version PDF:21
    References:47
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024