Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 2, Pages 258–274
DOI: https://doi.org/10.1070/SM9193
(Mi sm9193)
 

This article is cited in 1 scientific paper (total in 1 paper)

Spectral representations of topological groups and near-openly generated groups

V. M. Valova, K. L. Kozlovb

a Nipissing University, North Bay, ON, Canada
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Near-openly generated groups are introduced. They form a topological and multiplicative subclass of $\mathbb R$-factorizable groups. Dense and open subgroups, quotients and the Raikov completion of a near-openly generated group are near-openly generated. Almost connected pro-Lie groups, Lindelöf almost metrizable groups and the spaces $C_p(X)$ of all continuous real-valued functions on a Tychonoff space with pointwise convergence topology are near-openly generated.
We provide characterizations of near-openly generated groups using methods of inverse spectra and topological game theory.
Bibliography: 24 titles.
Keywords: topological group, (nearly open) homomorphism, inverse spectrum, topological game, $\mathbb R$-factorizable group.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC) 261914-13
Russian Foundation for Basic Research 17-51-18051 Болг_а
The research of V. M. Valov was carried out with the support of the Natural Sciences and Engineering Research Council of Canada — NSERC (grant no. 261914-13). The research of K. L. Kozlov was carried out with the support of the Russian Foundation for Basic Research (grant no. 17-51-18051 Болг_а).
Received: 12.11.2018 and 07.04.2019
Russian version:
Matematicheskii Sbornik, 2020, Volume 211, Number 2, Pages 106–124
DOI: https://doi.org/10.4213/sm9193
Bibliographic databases:
Document Type: Article
UDC: 512.546
MSC: 22A05, 22A25
Language: English
Original paper language: Russian
Citation: V. M. Valov, K. L. Kozlov, “Spectral representations of topological groups and near-openly generated groups”, Mat. Sb., 211:2 (2020), 106–124; Sb. Math., 211:2 (2020), 258–274
Citation in format AMSBIB
\Bibitem{ValKoz20}
\by V.~M.~Valov, K.~L.~Kozlov
\paper Spectral representations of topological groups and near-openly generated groups
\jour Mat. Sb.
\yr 2020
\vol 211
\issue 2
\pages 106--124
\mathnet{http://mi.mathnet.ru/sm9193}
\crossref{https://doi.org/10.4213/sm9193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..258V}
\elib{https://elibrary.ru/item.asp?id=43292047}
\transl
\jour Sb. Math.
\yr 2020
\vol 211
\issue 2
\pages 258--274
\crossref{https://doi.org/10.1070/SM9193}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529471600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086124522}
Linking options:
  • https://www.mathnet.ru/eng/sm9193
  • https://doi.org/10.1070/SM9193
  • https://www.mathnet.ru/eng/sm/v211/i2/p106
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:409
    Russian version PDF:36
    English version PDF:17
    References:36
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024