Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 2, Pages 201–225
DOI: https://doi.org/10.1070/SM9189
(Mi sm9189)
 

This article is cited in 12 scientific papers (total in 12 papers)

Integrable billiard systems realize toric foliations on lens spaces and the 3-torus

V. V. Vedyushkina

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: An integrable billiard system on a book, a complex of several billiard sheets glued together along the common spine, is considered. Each sheet is a planar domain bounded by arcs of confocal quadrics; it is known that a billiard in such a domain is integrable. In a number of interesting special cases of such billiards the Fomenko-Zieschang invariants of Liouville equivalence (marked molecules $W^*$) turn out to describe nontrivial toric foliations on lens spaces and on the 3-torus, which are isoenergy manifolds for these billiards.
Bibliography: 18 titles.
Keywords: integrable system, billiard system, Liouville equivalence, Fomenko-Zieschang invariant.
Funding agency Grant number
Russian Science Foundation 17-11-01303
This research was supported by the Russian Science Foundation under grant no. 17-11-01303.
Received: 02.11.2018 and 23.04.2019
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37D50, 37J35; Secondary 37D40, 37J20, 70E40
Language: English
Original paper language: Russian
Citation: V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225
Citation in format AMSBIB
\Bibitem{Ved20}
\by V.~V.~Vedyushkina
\paper Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus
\jour Sb. Math.
\yr 2020
\vol 211
\issue 2
\pages 201--225
\mathnet{http://mi.mathnet.ru//eng/sm9189}
\crossref{https://doi.org/10.1070/SM9189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070044}
\zmath{https://zbmath.org/?q=an:1443.37043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..201V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529468500001}
\elib{https://elibrary.ru/item.asp?id=43301552}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086108656}
Linking options:
  • https://www.mathnet.ru/eng/sm9189
  • https://doi.org/10.1070/SM9189
  • https://www.mathnet.ru/eng/sm/v211/i2/p46
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:489
    Russian version PDF:81
    English version PDF:38
    References:49
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024