Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 82, Issue 2, Pages 397–424
DOI: https://doi.org/10.1070/SM1995v082n02ABEH003572
(Mi sm917)
 

This article is cited in 15 scientific papers (total in 15 papers)

On the structure of quasiminimal sets of foliations on surfaces

S. Kh. Aranson, E. V. Zhuzhoma
References:
Abstract: Foliations on compact surfaces are considered in this paper. The structure of a quasiminimal set is studied, and criteria for the recurrence of a nonclosed leaf are proved. The concept of an amply situated quasiminimal set is introduced, and the nonexistence of such sets on some orientable and nonorientable surfaces is proved. A sharp estimate of the number of quasiminimal sets of foliations on compact surfaces is given. These results are applied to an estimate of the number of one-dimensional basic sets of AA-diffeomorphisms of surfaces.
Received: 03.11.1992 and 13.07.1993
Bibliographic databases:
UDC: 517.917+513.8
MSC: Primary 58F10, 58F18; Secondary 57N05, 58F15, 54H20
Language: English
Original paper language: Russian
Citation: S. Kh. Aranson, E. V. Zhuzhoma, “On the structure of quasiminimal sets of foliations on surfaces”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 397–424
Citation in format AMSBIB
\Bibitem{AraZhu94}
\by S.~Kh.~Aranson, E.~V.~Zhuzhoma
\paper On the structure of quasiminimal sets of foliations on surfaces
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 82
\issue 2
\pages 397--424
\mathnet{http://mi.mathnet.ru/eng/sm917}
\crossref{https://doi.org/10.1070/SM1995v082n02ABEH003572}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1302622}
\zmath{https://zbmath.org/?q=an:0842.57024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RV83000010}
Linking options:
  • https://www.mathnet.ru/eng/sm917
  • https://doi.org/10.1070/SM1995v082n02ABEH003572
  • https://www.mathnet.ru/eng/sm/v185/i8/p31
  • This publication is cited in the following 15 articles:
    1. Grines V. Zhuzhoma E., “Around Anosov-Weil Theory”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, ed. Katok A. Pesin Y. Hertz F., Amer Mathematical Soc, 2017, 123–154  crossref  mathscinet  zmath  isi  scopus
    2. Irina Gelbukh, “Structure of a Morse form foliation on a closed surface in terms of genus”, Differential Geometry and its Applications, 2011  crossref  mathscinet
    3. A. López, “Foliation Admitting Recurrent Leaves of Infinite Depth on Compact Two-Manifolds”, J Dyn Control Syst, 13:2 (2007), 255  crossref  mathscinet  isi
    4. D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Proc. Steklov Inst. Math., 249 (2005), 1–221  mathnet  mathscinet  zmath
    5. Grines V., Zhuzhoma E., “On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors”, Trans. Am. Math. Soc., 357:2 (2005), 617–667  crossref  mathscinet  zmath  isi
    6. Lopez A., “A Structure Theorem for Foliations on Non-Compact 2-Manifolds”, Ergod. Theory Dyn. Syst., 25:3 (2005), 893–912  crossref  mathscinet  zmath  isi
    7. Gutierrez C., Hector G., Lopez A., “Interval Exchange Transformations and Foliations on Infinite Genus 2-Manifolds”, Ergod. Theory Dyn. Syst., 24:4 (2004), 1097–1108  crossref  mathscinet  zmath  isi
    8. Aranson S., Grines V., Kaimanovich V., “Classification of Supertransitive 2-Webs on Surfaces”, J. Dyn. Control Syst., 9:4 (2003), 455–468  crossref  mathscinet  zmath  isi
    9. D. V. Anosov, E. V. Zhuzhoma, “Asymptotic Behavior of Covering Curves on the Universal Coverings of Surfaces”, Proc. Steklov Inst. Math., 238 (2002), 1–46  mathnet  mathscinet  zmath
    10. V. Z. Grines, E. V. Zhuzhoma, “Structurally stable diffeomorphisms with basis sets of codimension one”, Izv. Math., 66:2 (2002), 223–284  mathnet  crossref  crossref  mathscinet  zmath
    11. S. Aranson, V. Grines, E. Zhuzhoma, “On Anosov–Weil problem”, Topology, 40:3 (2001), 475  crossref  mathscinet  zmath
    12. S. Kh. Aranson, E. V. Zhuzhoma, “Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces”, Math. Notes, 68:6 (2000), 695–703  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. S. Kh. Aranson, R. V. Plykin, A. Yu. Zhirov, E. V. Zhuzhoma, “Exact upper bounds for the number of one-dimensional basic sets of surfaceA-diffeomorphisms”, J Dyn Control Syst, 3:1 (1997), 1  crossref  mathscinet  zmath
    14. Nikolaev I., “The Poincaré-Bendixson Theorem and Arational Foliations on the Sphere”, Ann. Inst. Fourier, 46:4 (1996), 1159–&  crossref  mathscinet  zmath  isi
    15. S. Kh. Aranson, V. Z. Grines, E. V. Zhuzhoma, “On the geometry and topology of flows and foliations on surfaces and the Anosov problem”, Sb. Math., 186:8 (1995), 1107–1146  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:393
    Russian version PDF:92
    English version PDF:24
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025