Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 12, Pages 1663–1689
DOI: https://doi.org/10.1070/SM9168
(Mi sm9168)
 

This article is cited in 1 scientific paper (total in 1 paper)

The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type

Yu. A. Aminov

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
References:
Abstract: The action of the Monge-Ampère operator on polynomials of degree four in two variables is investigated. Two necessary conditions for the Monge-Ampère equation to have a solution are established. Sufficient conditions for solvability are indicated, which coincide with necessary conditions in certain cases. Invariant submanifolds of the action of the Monge-Ampère operator are found. Closed invariant chains of polynomials are constructed, and all the fixed points having the form of general polynomials of degree four are found.
Bibliography: 9 titles.
Keywords: cone, conic, necessary condition, solvability of equations, invariant set, fixed point.
Received: 12.09.2018 and 02.04.2019
Bibliographic databases:
Document Type: Article
UDC: 514.77+517.95
MSC: 35C11, 35G20
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type”, Sb. Math., 210:12 (2019), 1663–1689
Citation in format AMSBIB
\Bibitem{Ami19}
\by Yu.~A.~Aminov
\paper The action of the Monge-Amp\`ere operator on polynomials in the plane and its fixed points of polynomial type
\jour Sb. Math.
\yr 2019
\vol 210
\issue 12
\pages 1663--1689
\mathnet{http://mi.mathnet.ru//eng/sm9168}
\crossref{https://doi.org/10.1070/SM9168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036805}
\zmath{https://zbmath.org/?q=an:1435.35116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520439600001}
\elib{https://elibrary.ru/item.asp?id=43296655}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086147213}
Linking options:
  • https://www.mathnet.ru/eng/sm9168
  • https://doi.org/10.1070/SM9168
  • https://www.mathnet.ru/eng/sm/v210/i12/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024