Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 8, Pages 1179–1205
DOI: https://doi.org/10.1070/SM9134
(Mi sm9134)
 

This article is cited in 18 scientific papers (total in 18 papers)

Convex trigonometry with applications to sub-Finsler geometry

L. V. Lokutsievskiyab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: A new convenient method for describing flat convex compact sets and their polar sets is proposed. It generalizes the classical trigonometric functions sin and cos. It is apparent that this method can be very useful for an explicit description of solutions of optimal control problems with two-dimensional control. Using this method a series of sub-Finsler problems with two-dimensional control lying in an arbitrary convex set Ω is investigated. Namely, problems on the Heisenberg, Engel, and Cartan groups and also Grushin's and Martinet's cases are considered. Particular attention is paid to the case when Ω is a convex polygon.
Bibliography: 13 titles.
Keywords: sub-Finsler geometry, polar set, trigonometric functions, convex analysis, physical pendulum equation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00805-а
17-01-00809-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant nos. 17-01-00805-a and 17-01-00809-a).
Received: 17.05.2018 and 26.10.2018
Bibliographic databases:
Document Type: Article
UDC: 514.172+517.977+514.13
MSC: 26A99, 49J30, 53C17
Language: English
Original paper language: Russian
Citation: L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205
Citation in format AMSBIB
\Bibitem{Lok19}
\by L.~V.~Lokutsievskiy
\paper Convex trigonometry with applications to sub-Finsler geometry
\jour Sb. Math.
\yr 2019
\vol 210
\issue 8
\pages 1179--1205
\mathnet{http://mi.mathnet.ru/eng/sm9134}
\crossref{https://doi.org/10.1070/SM9134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985730}
\zmath{https://zbmath.org/?q=an:1429.49022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1179L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000508164100005}
\elib{https://elibrary.ru/item.asp?id=38593083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087456358}
Linking options:
  • https://www.mathnet.ru/eng/sm9134
  • https://doi.org/10.1070/SM9134
  • https://www.mathnet.ru/eng/sm/v210/i8/p120
  • Related presentations:
    This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:784
    Russian version PDF:124
    English version PDF:54
    References:77
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025