Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 8, Pages 1179–1205
DOI: https://doi.org/10.1070/SM9134
(Mi sm9134)
 

This article is cited in 17 scientific papers (total in 17 papers)

Convex trigonometry with applications to sub-Finsler geometry

L. V. Lokutsievskiyab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: A new convenient method for describing flat convex compact sets and their polar sets is proposed. It generalizes the classical trigonometric functions $\sin$ and $\cos$. It is apparent that this method can be very useful for an explicit description of solutions of optimal control problems with two-dimensional control. Using this method a series of sub-Finsler problems with two-dimensional control lying in an arbitrary convex set $\Omega$ is investigated. Namely, problems on the Heisenberg, Engel, and Cartan groups and also Grushin's and Martinet's cases are considered. Particular attention is paid to the case when $\Omega$ is a convex polygon.
Bibliography: 13 titles.
Keywords: sub-Finsler geometry, polar set, trigonometric functions, convex analysis, physical pendulum equation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00805-а
17-01-00809-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant nos. 17-01-00805-a and 17-01-00809-a).
Received: 17.05.2018 and 26.10.2018
Bibliographic databases:
Document Type: Article
UDC: 514.172+517.977+514.13
MSC: 26A99, 49J30, 53C17
Language: English
Original paper language: Russian
Citation: L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205
Citation in format AMSBIB
\Bibitem{Lok19}
\by L.~V.~Lokutsievskiy
\paper Convex trigonometry with applications to sub-Finsler geometry
\jour Sb. Math.
\yr 2019
\vol 210
\issue 8
\pages 1179--1205
\mathnet{http://mi.mathnet.ru//eng/sm9134}
\crossref{https://doi.org/10.1070/SM9134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985730}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1179L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000508164100005}
\elib{https://elibrary.ru/item.asp?id=38593083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087456358}
Linking options:
  • https://www.mathnet.ru/eng/sm9134
  • https://doi.org/10.1070/SM9134
  • https://www.mathnet.ru/eng/sm/v210/i8/p120
  • Related presentations:
    This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:709
    Russian version PDF:103
    English version PDF:34
    References:61
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024