Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 7, Pages 911–927
DOI: https://doi.org/10.1070/SM9128
(Mi sm9128)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Pliś metric and Lipschitz stability of minimization problems

M. V. Balashov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We study the metric introduced by Pliś on the set of convex closed bounded subsets of a Banach space. For a real Hilbert space it is proved that metric projection and (under certain conditions) metric antiprojection from a point onto a set satisfy a Lipschitz condition with respect to the set in the Pliś metric. It is proved that solutions of a broad class of minimization problems are also Lipschitz stable with respect to the set. Several examples are discussed.
Bibliography: 18 titles.
Keywords: Pliś metric, Hausdorff metric, support function, strong convexity, Lipschitz continuous gradient.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00259-а
18-01-00209-а
This work was supported by the Russian Foundation for Basic Research (grant nos. 16-01-00259-a and 18-01-00209-a).
Received: 23.04.2018
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: Primary 49J53, 52A20; Secondary 90C26
Language: English
Original paper language: Russian
Citation: M. V. Balashov, “The Pliś metric and Lipschitz stability of minimization problems”, Sb. Math., 210:7 (2019), 911–927
Citation in format AMSBIB
\Bibitem{Bal19}
\by M.~V.~Balashov
\paper The Pli\'s metric and Lipschitz stability of minimization problems
\jour Sb. Math.
\yr 2019
\vol 210
\issue 7
\pages 911--927
\mathnet{http://mi.mathnet.ru//eng/sm9128}
\crossref{https://doi.org/10.1070/SM9128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985721}
\zmath{https://zbmath.org/?q=an:1423.49023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..911B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485821800001}
\elib{https://elibrary.ru/item.asp?id=38487812}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073023962}
Linking options:
  • https://www.mathnet.ru/eng/sm9128
  • https://doi.org/10.1070/SM9128
  • https://www.mathnet.ru/eng/sm/v210/i7/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:448
    Russian version PDF:64
    English version PDF:19
    References:41
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024