|
This article is cited in 4 scientific papers (total in 4 papers)
On the Cauchy transform of functionals on a Bergman space
V. V. Napalkov, R. S. Yulmukhametov Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
The strong dual space of the Bergman space
$$
B_2(G)=\biggl\{f\in H(G):\|f\|_{B_2(G)}^2=\int_G|f(x)|^2\,d\mathrm{v}(z)<\infty\biggr\},
$$
is described in terms of the Cauchy transformation, where $\mathrm{v}(z)$ is Lebesgue measure and $G$ is a simply connected domain with boundary of class $C^{1+0}$. As a normed space, $B_2^*(G)$ is isomorphic to the space
$$
B_2^1(\mathbb{C}\setminus \overline G)
=\biggl\{\gamma (\zeta )\in H(\mathbb{C}\setminus \overline G), \gamma (\infty )=0:
\|\gamma \|_{B_2^1(\mathbb C\setminus\overline G)}^2
=\int_{{\mathbb C}\setminus {\overline G}}
|\gamma'(\zeta )|^2\,d\mathrm{v}(\zeta)<\infty\biggr\}.
$$
An example is given of a domain with nonsmooth boundary for which the spaces $B_2^*(G)$ and $B_2^1(\mathbb C\setminus\overline G)$ are not isomorphic.
Received: 24.06.1993
Citation:
V. V. Napalkov, R. S. Yulmukhametov, “On the Cauchy transform of functionals on a Bergman space”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 327–336
Linking options:
https://www.mathnet.ru/eng/sm912https://doi.org/10.1070/SM1995v082n02ABEH003567 https://www.mathnet.ru/eng/sm/v185/i7/p77
|
|